

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	The Pyramid Web Application Development Framework v1.0a7

The Pyramid Web Application Development Framework

Pyramid is a small, fast, down-to-earth Python web application
development framework. It is developed as part of the Pylons Project [http://docs.pylonshq.com/]. It is licensed under a BSD-like license [http://repoze.org/license.html].

Note

Pyramid is the latest iteration of the web framework previously known as
repoze.bfg.

Front Matter

	Copyright, Trademarks, and Attributions

	Typographical Conventions

Narrative documentation

Narrative documentation in chapter form explaining how to use
Pyramid.

	Pyramid Introduction
	What Is The Pylons Project?

	Pyramid and Other Web Frameworks

	Installing Pyramid
	Before You Install

	Installing Pyramid on a UNIX System

	Installing Pyramid on a Windows System

	Installing Pyramid on Google App Engine

	Installing Pyramid on Jython

	What Gets Installed

	Application Configuration
	Imperative Configuration

	Configuration Decorations and Code Scanning

	Declarative Configuration

	Creating Your First Pyramid Application
	Hello World, Goodbye World

	References

	Creating a Pyramid Project
	Paster Templates Included with Pyramid

	Creating the Project

	Installing your Newly Created Project for Development

	Running The Tests For Your Application

	The Interactive Shell

	Running The Project Application

	Viewing the Application

	The Project Structure

	The MyProject Project

	The myproject Package

	Modifying Package Structure

	Startup
	The Startup Process

	Deployment Settings

	Resource Location and View Lookup
	Should I Use Traversal or URL Dispatch for Resource Location?

	URL Dispatch
	High-Level Operational Overview

	Route Configuration

	Route Matching

	Routing Examples

	Matching the Root URL

	Generating Route URLs

	Redirecting to Slash-Appended Routes

	Cleaning Up After a Request

	Using Pyramid Security With URL Dispatch

	Debugging Route Matching

	References

	Traversal
	A High-Level Overview of Traversal

	Traversal Details

	The Resource Tree

	The Traversal Algorithm

	References

	Views
	View Callables

	View Configuration: Mapping a Resource or URL Pattern to a View Callable

	View Lookup and Invocation

	Further Information

	Renderers
	Overview

	Writing View Callables Which Use a Renderer

	Built-In Renderers

	Varying Attributes of Rendered Responses

	Adding and Overriding Renderers

	Templates
	Using Templates Directly

	System Values Used During Rendering

	Templates Used as Renderers via Configuration

	Chameleon ZPT Templates

	Templating with Chameleon Text Templates

	Side Effects of Rendering a Chameleon Template

	Nicer Exceptions in Chameleon Templates

	Chameleon Template Internationalization

	Templating With Mako Templates

	Automatically Reloading Templates

	Available Add-On Template System Bindings

	Resources
	Defining a Resource Constructor

	Resources Which Implement Interfaces

	Defining a Resource Tree

	Location-Aware Resources

	Pyramid API Functions That Act Against Resources

	Static Assets
	Serving Static Assets

	Advanced: Serving Static Assets Using a View Callable

	Request and Response Objects
	Request

	Response

	Multidict

	Session Objects
	Using The Default Session Factory

	Using a Session Object

	Using Alternate Session Factories

	Creating Your Own Session Factory

	Security
	Enabling an Authorization Policy

	Protecting Views with Permissions

	Assigning ACLs to your Resource Objects

	Elements of an ACL

	Special Principal Names

	Special Permissions

	Special ACEs

	ACL Inheritance and Location-Awareness

	Changing the Forbidden View

	Debugging View Authorization Failures

	Debugging Imperative Authorization Failures

	Creating Your Own Authentication Policy

	Creating Your Own Authorization Policy

	Combining Traversal and URL Dispatch
	A Review of Non-Hybrid Applications

	Hybrid Applications

	Corner Cases

	Internationalization and Localization
	Creating a Translation String

	Working With gettext Translation Files

	Using a Localizer

	Obtaining the Locale Name for a Request

	Performing Date Formatting and Currency Formatting

	Chameleon Template Support for Translation Strings

	Localization-Related Deployment Settings

	“Detecting” Available Languages

	Activating Translation

	Locale Negotiators

	Virtual Hosting
	Hosting an Application Under a URL Prefix

	Virtual Root Support

	Further Documentation and Examples

	Using Events
	An Example

	Environment Variables and .ini File Settings
	Reloading Templates

	Reloading Assets

	Debugging Authorization

	Debugging Not Found Errors

	Debugging Route Matching

	Debugging All

	Reloading All

	Default Locale Name

	Mako Template Render Settings

	Examples

	Understanding the Distinction Between reload_templates and reload_assets

	Unit, Integration, and Functional Testing
	Test Set Up and Tear Down

	Using the Configurator and pyramid.testing APIs in Unit Tests

	Creating Integration Tests

	Creating Functional Tests

	Using Hooks
	Changing the Not Found View

	Changing the Forbidden View

	Changing the Traverser

	Changing How pyramid.url.resource_url Generates a URL

	Changing the Request Factory

	Adding Renderer Globals

	Using The Before Render Event

	Using Response Callbacks

	Using Finished Callbacks

	Registering Configuration Decorators

	Declarative Configuration
	Declarative Configuration

	Hello World, Goodbye World (Declarative)

	Scanning via ZCML

	Which Mode Should I Use?

	Configuring a Route via ZCML

	Configuring a Handler via ZCML

	Serving Static Assets Using ZCML

	Enabling an Authorization Policy Via ZCML

	Built-In Authentication Policy ZCML Directives

	Built-In Authorization Policy ZCML Directives

	Adding and Overriding Renderers via ZCML

	Adding a Translation Directory via ZCML

	Adding a Custom Locale Negotiator via ZCML

	Configuring an Event Listener via ZCML

	Extending An Existing Pyramid Application
	Rules for Building An Extensible Application

	Extending an Existing Application

	Dealing With ZCML Inclusions

	Assets
	Understanding Assets

	Overriding Assets

	Request Processing

	Thread Locals
	Why and How Pyramid Uses Thread Local Variables

	Why You Shouldn’t Abuse Thread Locals

	Using the Zope Component Architecture in Pyramid
	Using the ZCA Global API in a Pyramid Application

	Using Broken ZCML Directives

Tutorials

Detailed tutorials explaining how to use Pyramid to build
various types of applications and how to deploy Pyramid
applications to various platforms.

	ZODB + Traversal Wiki Tutorial (For Developers Familiar with Zope)
	Background

	Installation

	Basic Layout

	Defining the Domain Model

	Defining Views

	Using View Decorators Rather than ZCML view directives

	Adding Authorization

	Distributing Your Application

	SQLAlchemy + URL Dispatch Wiki Tutorial (For Developers Familiar with Pylons 1)
	Background

	Installation

	Basic Layout

	Defining the Domain Model

	Defining Views

	Adding Authorization

	Distributing Your Application

	Converting a repoze.bfg Application to Pyramid

	Converting an Existing Zope/CMF Application to Pyramid
	Content Types

	Catalog

	Skins

	Actions

	Workflow

	Missing Comparisons

	Running Pyramid on Google’s App Engine
	Zipping Files Via Pip

	Running a Pyramid Application under mod_wsgi

	Using ZODB with ZEO
	Installing Dependencies

	Configuration

	Running

	Using repoze.catalog Within Pyramid

Reference Material

Reference material includes API documentation and documentation of
every Pyramid ZCML directive.

	API Documentation
	pyramid.authorization

	pyramid.authentication

	pyramid.chameleon_text

	pyramid.chameleon_zpt

	pyramid.config

	pyramid.events

	pyramid.exceptions

	pyramid.httpexceptions

	pyramid.i18n

	pyramid.interfaces

	pyramid.location

	pyramid.paster

	pyramid.registry

	pyramid.renderers

	pyramid.request

	pyramid.response

	pyramid.router

	pyramid.scripting

	pyramid.security

	pyramid.session

	pyramid.settings

	pyramid.testing

	pyramid.threadlocal

	pyramid.traversal

	pyramid.url

	pyramid.view

	pyramid.wsgi

	ZCML Directives
	aclauthorizationpolicy

	adapter

	authtktauthenticationpolicy

	asset

	configure

	default_permission

	forbidden

	handler

	include

	localenegotiator

	notfound

	remoteuserauthenticationpolicy

	renderer

	repozewho1authenticationpolicy

	route

	scan

	static

	subscriber

	translationdir

	utility

	view

Detailed Change History

	Pyramid Change History

	repoze.bfg Change History (previous name for Pyramid)

Design Documentation

	Defending Pyramid’s Design

Sample Applications

cluegun [https://github.com/Pylons/cluegun] is a simple pastebin
application based on Rocky Burt’s ClueBin [http://pypi.python.org/pypi/ClueBin/0.2.3]. It demonstrates form
processing, security, and the use of ZODB within a Pyramid
application. Check this application out via:

git clone git://github.com/Pylons/cluegun.git

virginia [https://github.com/Pylons/virginia] is a very simple dynamic
file rendering application. It is willing to render structured text
documents, HTML documents, and images from a filesystem directory. An
earlier version of this application runs the repoze.org [http://repoze.org] website. Check this application out via:

git clone git://github.com/Pylons/virginia.git

shootout [https://github.com/Pylons/shootout] is an example “idea
competition” application by Carlos de la Guardia. It demonstrates a hybrid
of URL dispatch and traversal and integration with
SQLAlchemy [http://www.sqlalchemy.org/], repoze.who, and
Deliverance [http://www.deliveranceproject.org/]. Check this application
out of version control via:

git clone git://github.com/Pylons/shootout.git

Older Sample Applications (repoze.bfg)

Note

These applications are for an older version of Pyramid, which was
named repoze.bfg. They won’t work unmodified under Pyramid, but
might provide useful clues.

bfgsite [http://svn.repoze.org/bfgsite/trunk] is the software which
runs the bfg.repoze.org [http://bfg.repoze.org] website. It
demonstrates integration with Trac, and includes several
mini-applications such as a pastebin and tutorial engine. Check a
buildout for this application out of Subversion via:

svn co http://svn.repoze.org/buildouts/bfgsite/ bfgsite_buildout

KARL [http://karlproject.org] is a moderately-sized application
(roughly 70K lines of Python code) built on top of repoze.bfg
and other Repoze software. It is an open source web system for
collaboration, organizational intranets, and knowledge management, It
provides facilities for wikis, calendars, manuals, searching, tagging,
commenting, and file uploads. See the KARL site [http://karlproject.org] for download and installation details.

Support and Development

The Pylons Project web site [http://docs.pylonshq.com/] is the main online
source of Pyramid support and development information.

To report bugs, use the issue tracker [http://github.com/Pylons/pyramid/issues].

If you’ve got questions that aren’t answered by this documentation,
contact the Pylons-devel maillist [http://groups.google.com/group/pylons-devel] or join the #pylons
IRC channel.

Browse and check out tagged and trunk versions of Pyramid via
the Pyramid GitHub repository [http://github.com/Pylons/pyramid/].
To check out the trunk via git, use this command:

git clone git@github.com:Pylons/pyramid.git

To find out how to become a contributor to Pyramid, please see the
contributor’s section of the documentation [http://docs.pylonshq.com/index.html#contributing].

Index and Glossary

	Glossary

	Index

	Search Page

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Copyright, Trademarks, and Attributions

The Pyramid Web Application Development Framework, Version 1.0

by Chris McDonough

Copyright © 2008-2010, Agendaless Consulting.

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. You must
give the original author credit. You may not use this work for
commercial purposes. If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same or
similar license to this one.

Note

While the Pyramid documentation is offered under the
Creative Commons Attribution-Nonconmmercial-Share Alike 3.0 United
States License, the Pyramid software is offered under a
less restrictive (BSD-like) license [http://repoze.org/license.html] .

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. However, use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on as “as-is” basis. The author and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the
information contained in this book. No patent liability is assumed
with respect to the use of the information contained herein.

Attributions

	Contributors:

	Ben Bangert, Blaise Laflamme, Carlos de la Guardia, Paul Everitt,
Marius Gedminas

	Used with permission:

	The Request and Response Objects chapter is adapted, with permission, from
documentation originally written by Ian Bicking.

Contacting The Publisher

Please send documentation licensing inquiries, translation inquiries,
and other business communications to Agendaless Consulting. Please send software and other
technical queries to the Pylons-devel maillist [http://groups.google.com/group/pylons-devel].

HTML Version and Source Code

An HTML version of this book is freely available via
http://docs.pylonshq.com

The source code for the examples used in this book are available
within the Pyramid software distribution, always available
via https://github.com/Pylons/pyramid

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Typographical Conventions

Literals, filenames and function arguments are presented using the
following style:

argument1

Warnings, which represent limitations and need-to-know information
related to a topic or concept are presented in the following style:

Warning

This is a warning.

Notes, which represent additional information related to a topic or
concept are presented in the following style:

Note

This is a note.

We present Python method names using the following style:

pyramid.config.Configurator.add_view()

We present Python class names, module names, attributes and global
variables using the following style:

pyramid.config.Configurator.registry

References to glossary terms are presented using the following style:

Pylons

URLs are presented using the following style:

Pylons [http://pylonshq.com]

References to sections and chapters are presented using the following
style:

Traversal

Code and configuration file blocks are presented in the following style:

	1
2

	def foo(abc):
 pass

When a command that should be typed on one line is too long to fit on
a page, the backslash \ is used to indicate that the following
printed line should actually be part of the command:

c:\bigfntut\tutorial> ..\Scripts\nosetests --cover-package=tutorial \
 --cover-erase --with-coverage

A sidebar, which presents a concept tangentially related to content
discussed on a page, is rendered like so:

This is a sidebar

Sidebar information.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Pyramid Introduction

If they are judged only by differences in user interface, most web
applications seem to have very little in common with each other. For
example, a web page served by one web application might be a
representation of the contents of an accounting ledger, while a web
page served by another application might be a listing of songs. These
applications probably won’t serve the same set of customers. However,
although they’re not very similar on the surface, both a
ledger-serving application and a song-serving application can be
written using Pyramid.

Pyramid is a very general open source Python web
framework. As a framework, its primary job is to make it easier for
a developer to create an arbitrary web application. The type of
application being created isn’t really important; it could be a
spreadsheet, a corporate intranet, or an “oh-so-Web-2.0” social
networking platform. Pyramid is general enough that it can
be used in a wide variety of circumstances.

Frameworks vs. Libraries

A framework differs from a library in one very important way:
library code is always called by code that you write, while a
framework always calls code that you write. Using a set of
libraries to create an application is usually easier than using a
framework initially, because you can choose to cede control to
library code you have not authored very selectively. But when you
use a framework, you are required to cede a greater portion of
control to code you have not authored: code that resides in the
framework itself. You needn’t use a framework at all to create a
web application using Python. A rich set of libraries already
exists for the platform. In practice, however, using a framework
to create an application is often more practical than rolling your
own via a set of libraries if the framework provides a set of
facilities that fits your application requirements.

The first release of the predecessor to Pyramid (named
repoze.bfg) was made in July of 2008. Since its first release,
we’ve tried to ensure that it maintains the following attributes:

	Simplicity

	Pyramid attempts to be a “pay only for what you eat”
framework which delivers results even if you have only partial
knowledge. Other frameworks may expect you to understand many
concepts and technologies fully before you can be truly productive.
Pyramid doesn’t force you to use any particular technology
to produce an application, and we try to keep the core set of
concepts you need to understand to a minimum.

	A Sense of Fun

	Developing a Pyramid application should not feel
“enterprisey”. We like to keep things down-to-earth.

	Minimalism

	Pyramid provides only the very basics: URL to code
mapping, templating, security, and resources. There is not
much more to the framework than these pieces: you are expected to
provide the rest.

	Documentation

	Because Pyramid is minimal, it’s relatively easy to keep
its documentation up-to-date, which is helpful to bring new
developers up to speed. It’s our goal that nothing remain
undocumented about Pyramid.

	Speed

	Pyramid is faster than many other popular Python web
frameworks for common tasks such as templating and simple response
generation. The “hardware is cheap” mantra has its limits when
you’re responsible for managing a great many machines: the fewer you
need, the less pain you’ll have.

	Familiarity

	The Pyramid framework is a canonization of practices that
“fit the brains” of its authors.

	Trustability

	Pyramid is developed conservatively and tested
exhaustively. If it ain’t tested, it’s broke. Every release of
Pyramid has 100% statement coverage via unit tests.

	Openness

	Like Python, the Pyramid software is distributed
under a permissive open source license [http://repoze.org/license.html].

What Is The Pylons Project?

Pyramid is a member of the collection of software published under the
Pylons Project. Pylons software is written by a loose-knit community of
contributors. The Pylons Project website [http://docs.pylonshq.com]
includes details about how Pyramid relates to the Pylons Project.

Pyramid and Other Web Frameworks

Until the end of 2010, Pyramid was known as repoze.bfg; it was
merged into the Pylons project as Pyramid in November of that year.

Pyramid was inspired by Zope, Pylons (version
1.0) and Django. As a result, Pyramid borrows several
concepts and features from each, combining them into a unique web
framework.

Many features of Pyramid trace their origins back to
Zope. Like Zope applications, Pyramid applications
can be configured via a set of declarative configuration files. Like
Zope applications, Pyramid applications can be easily
extended: if you obey certain constraints, the application you produce
can be reused, modified, re-integrated, or extended by third-party
developers without forking the original application. The concepts of
traversal and declarative security in Pyramid were
pioneered first in Zope.

The Pyramid concept of URL dispatch is inspired by the
Routes system used by Pylons version 1.0. Like Pylons
version 1.0, Pyramid is mostly policy-free. It makes no
assertions about which database you should use, and its built-in
templating facilities are included only for convenience. In essence,
it only supplies a mechanism to map URLs to view code, along
with a set of conventions for calling those views. You are free to
use third-party components that fit your needs in your applications.

The concept of view is used by Pyramid mostly as it would be
by Django. Pyramid has a documentation culture more like Django’s
than like Zope’s.

Like Pylons version 1.0, but unlike Zope, a
Pyramid application developer may use completely imperative
code to perform common framework configuration tasks such as adding a
view or a route. In Zope, ZCML is typically required for
similar purposes. In Grok, a Zope-based web framework,
decorator objects and class-level declarations are used for
this purpose. Pyramid supports ZCML and
decorator-based configuration, but does not require either. See
Application Configuration for more information.

Also unlike Zope and unlike other “full-stack” frameworks such
as Django, Pyramid makes no assumptions about which
persistence mechanisms you should use to build an application. Zope
applications are typically reliant on ZODB; Pyramid
allows you to build ZODB applications, but it has no reliance
on the ZODB software. Likewise, Django tends to assume that
you want to store your application’s data in a relational database.
Pyramid makes no such assumption; it allows you to use a
relational database but doesn’t encourage or discourage the decision.

Other Python web frameworks advertise themselves as members of a class
of web frameworks named model-view-controller [http://en.wikipedia.org/wiki/Model–view–controller] frameworks.
Insofar as this term has been claimed to represent a class of web
frameworks, Pyramid also generally fits into this class.

You Say Pyramid is MVC, But Where’s The Controller?

The Pyramid authors believe that the MVC pattern just doesn’t
really fit the web very well. In a Pyramid application, there is a
resource tree, which represents the site structure, and views, which tend
to present the data stored in the resource tree and a user-defined “domain
model”. However, no facility provided by the framework actually
necessarily maps to the concept of a “controller” or “model”. So if you
had to give it some acronym, I guess you’d say Pyramid is actually
an “RV” framework rather than an “MVC” framework. “MVC”, however, is
close enough as a general classification moniker for purposes of
comparison with other web frameworks.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Installing Pyramid

Before You Install

You will need Python [http://python.org] version 2.4 or better to
run Pyramid.

Python Versions

As of this writing, Pyramid has been tested under Python
2.4.6, Python 2.5.4 and Python 2.6.2, and Python 2.7. To ensure
backwards compatibility, development of Pyramid is
currently done primarily under Python 2.4 and Python 2.5.
Pyramid does not run under any version of Python before
2.4, and does not yet run under Python 3.X.

Pyramid is known to run on all popular Unix-like systems such as
Linux, MacOS X, and FreeBSD as well as on Windows platforms. It is also
known to run on Google’s App Engine and Jython.

Pyramid installation does not require the compilation of any
C code, so you need only a Python interpreter that meets the
requirements mentioned.

If You Don’t Yet Have A Python Interpreter (UNIX)

If your system doesn’t have a Python interpreter, and you’re on UNIX,
you can either install Python using your operating system’s package
manager or you can install Python from source fairly easily on any
UNIX system that has development tools.

Package Manager Method

You can use your system’s “package manager” to install Python. Every
system’s package manager is slightly different, but the “flavor” of
them is usually the same.

For example, on an Ubuntu Linux system, to use the system package
manager to install a Python 2.6 interpreter, use the following
command:

$ sudo apt-get install python2.6-dev

Once these steps are performed, the Python interpreter will usually be
invokable via python2.6 from a shell prompt.

Source Compile Method

It’s useful to use a Python interpreter that isn’t the “system”
Python interpreter to develop your software. The authors of
Pyramid tend not to use the system Python for development
purposes; always a self-compiled one. Compiling Python is usually
easy, and often the “system” Python is compiled with options that
aren’t optimal for web development.

To compile software on your UNIX system, typically you need
development tools. Often these can be installed via the package
manager. For example, this works to do so on an Ubuntu Linux system:

$ sudo apt-get install build-essential

On Mac OS X, installing XCode [http://developer.apple.com/tools/xcode/] has much the same effect.

Once you’ve got development tools installed on your system, On the
same system, to install a Python 2.6 interpreter from source, use
the following commands:

[chrism@vitaminf ~]$ cd ~
[chrism@vitaminf ~]$ mkdir tmp
[chrism@vitaminf ~]$ mkdir opt
[chrism@vitaminf ~]$ cd tmp
[chrism@vitaminf tmp]$ wget \
 http://www.python.org/ftp/python/2.6.4/Python-2.6.4.tgz
[chrism@vitaminf tmp]$ tar xvzf Python-2.6.4.tgz
[chrism@vitaminf tmp]$ cd Python-2.6.4
[chrism@vitaminf Python-2.6.4]$./configure \
 --prefix=$HOME/opt/Python-2.6.4
[chrism@vitaminf Python-2.6.4]$ make; make install

Once these steps are performed, the Python interpreter will be
invokable via $HOME/opt/Python-2.6.4/bin/python from a shell
prompt.

If You Don’t Yet Have A Python Interpreter (Windows)

If your Windows system doesn’t have a Python interpreter, you’ll need
to install it by downloading a Python 2.6-series interpreter
executable from python.org’s download section [http://python.org/download/] (the files labeled “Windows
Installer”). Once you’ve downloaded it, double click on the
executable and accept the defaults during the installation process.
You may also need to download and install the Python for Windows
extensions [http://sourceforge.net/projects/pywin32/files/].

Warning

After you install Python on Windows, you may need to add the
C:\Python26 directory to your environment’s Path in order
to make it possible to invoke Python from a command prompt by
typing python. To do so, right click My Computer, select
Properties –> Advanced Tab –> Environment Variables
and add that directory to the end of the Path environment
variable.

Installing Pyramid on a UNIX System

It is best practice to install Pyramid into a “virtual”
Python environment in order to obtain isolation from any “system”
packages you’ve got installed in your Python version. This can be
done by using the virtualenv package. Using a virtualenv will
also prevent Pyramid from globally installing versions of
packages that are not compatible with your system Python.

To set up a virtualenv in which to install Pyramid, first
ensure that setuptools is installed. Invoke import
setuptools within the Python interpreter you’d like to run
Pyramid under:

[chrism@vitaminf pyramid]$ python
Python 2.4.5 (#1, Aug 29 2008, 12:27:37)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import setuptools

If running import setuptools does not raise an ImportError, it
means that setuptools is already installed into your Python
interpreter. If import setuptools fails, you will need to install
setuptools manually. Note that above we’re using a Python 2.4-series
interpreter on Mac OS X; your output may differ if you’re using a
later Python version or a different platform.

If you are using a “system” Python (one installed by your OS
distributor or a 3rd-party packager such as Fink or MacPorts), you can
usually install the setuptools package by using your system’s package
manager. If you cannot do this, or if you’re using a self-installed
version of Python, you will need to install setuptools “by hand”.
Installing setuptools “by hand” is always a reasonable thing to do,
even if your package manager already has a pre-chewed version of
setuptools for installation.

To install setuptools by hand, first download ez_setup.py [http://peak.telecommunity.com/dist/ez_setup.py] then invoke it
using the Python interpreter into which you want to install
setuptools.

$ python ez_setup.py

Once this command is invoked, setuptools should be installed on your
system. If the command fails due to permission errors, you may need
to be the administrative user on your system to successfully invoke
the script. To remediate this, you may need to do:

$ sudo python ez_setup.py

Installing the virtualenv Package

Once you’ve got setuptools installed, you should install the
virtualenv package. To install the virtualenv package
into your setuptools-enabled Python interpreter, use the
easy_install command.

$ easy_install virtualenv

This command should succeed, and tell you that the virtualenv package
is now installed. If it fails due to permission errors, you may need
to install it as your system’s administrative user. For example:

$ sudo easy_install virtualenv

Creating the Virtual Python Environment

Once the virtualenv package is installed in your Python, you
can then create a virtual environment. To do so, invoke the
following:

$ virtualenv --no-site-packages env
New python executable in env/bin/python
Installing setuptools.............done.

Warning

Using --no-site-packages when generating your
virtualenv is very important. This flag provides the necessary
isolation for running the set of packages required by
Pyramid. If you do not specify --no-site-packages,
it’s possible that Pyramid will not install properly into
the virtualenv, or, even if it does, may not run properly,
depending on the packages you’ve already got installed into your
Python’s “main” site-packages dir.

Warning

If you’re on UNIX, do not use sudo to run the
virtualenv script. It’s perfectly acceptable (and desirable)
to create a virtualenv as a normal user.

You should perform any following commands that mention a “bin”
directory from within the env virtualenv dir.

Installing Pyramid Into the Virtual Python Environment

After you’ve got your env virtualenv installed, you may install
Pyramid itself using the following commands from within the
virtualenv (env) directory:

$ bin/easy_install pyramid

This command will take longer than the previous ones to complete, as it
downloads and installs a number of dependencies.

Installing Pyramid on a Windows System

	Install, or find Python 2.6 [http://python.org/download/releases/2.6.4/] for your system.

	Install the Python for Windows extensions [http://sourceforge.net/projects/pywin32/files/]. Make sure to
pick the right download for Python 2.6 and install it using the
same Python installation from the previous step.

	Install latest setuptools distribution into the Python you
obtained/installed/found in the step above: download ez_setup.py [http://peak.telecommunity.com/dist/ez_setup.py] and run it using
the python interpreter of your Python 2.6 installation using a
command prompt:

c:\> c:\Python26\python ez_setup.py

	Use that Python’s bin/easy_install to install virtualenv:

c:\> c:\Python26\Scripts\easy_install virtualenv

	Use that Python’s virtualenv to make a workspace:

c:\> c:\Python26\Scripts\virtualenv --no-site-packages env

	Switch to the env directory:

c:\> cd env

	(Optional) Consider using bin\activate.bat to make your shell
environment wired to use the virtualenv.

	Use easy_install pointed at the “current” index to get
Pyramid and its direct dependencies installed:

c:\env> Scripts\easy_install pyramid

Installing Pyramid on Google App Engine

Running Pyramid on Google’s App Engine documents the steps required to install a
Pyramid application on Google App Engine.

Installing Pyramid on Jython

Pyramid is known to work under Jython version 2.5.1.
Install Jython, and then follow the installation steps for
Pyramid on your platform described in one of the sections
entitled Installing Pyramid on a UNIX System or Installing Pyramid on a Windows System above,
replacing the python command with jython as necessary. The
steps are exactly the same except you should use the jython
command name instead of the python command name.

One caveat exists to using Pyramid under Jython: the Chameleon
templating engine does not work on Jython. However, the Mako
templating system, which is also included with Pyramid, does work under
Jython; use it instead.

What Gets Installed

When you easy_install Pyramid, various Zope libraries,
various Chameleon libraries, WebOb, Paste, PasteScript, and
PasteDeploy libraries are installed.

Additionally, as chronicled in Creating a Pyramid Project, PasteScript (aka
paster) templates will be registered that make it easy to start a
new Pyramid project.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Application Configuration

Each deployment of an application written using Pyramid implies a
specific configuration of the framework itself. For example, an
application which serves up MP3 files for your listening enjoyment might plug
code into the framework that manages song files, while an application that
manages corporate data might plug in code that manages accounting
information. The way in which code is plugged in to Pyramid for a
specific application is referred to as “configuration”.

Most people understand “configuration” as coarse settings that inform the
high-level operation of a specific application deployment. For instance,
it’s easy to think of the values implied by a .ini file parsed at
application startup time as “configuration”. Pyramid extends this
pattern to application development, using the term “configuration” to express
standardized ways that code gets plugged into a deployment of the framework
itself. When you plug code into the Pyramid framework, you are
“configuring” Pyramid to create a particular application.

Imperative Configuration

Here’s one of the simplest Pyramid applications, configured
imperatively:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from paste.httpserver import serve
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

We won’t talk much about what this application does yet. Just note that the
“configuration’ statements take place underneath the if __name__ ==
'__main__': stanza in the form of method calls on a Configurator
object (e.g. config.add_view(...)). These statements take place one
after the other, and are executed in order, so the full power of Python,
including conditionals, can be employed in this mode of configuration.

Configuration Decorations and Code Scanning

A different mode of configuration gives more locality of reference to a
configuration declaration. It’s sometimes painful to have all
configuration done in imperative code, because often the code for a single
application may live in many files. If the configuration is centralized in
one place, you’ll need to have at least two files open at once to see the
“big picture”: the file that represents the configuration, and the file that
contains the implementation objects referenced by the configuration. To
avoid this, Pyramid allows you to insert configuration
decoration statements very close to code that is referred to by the
declaration itself. For example:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(name='hello', request_method='GET')
def hello(request):
 return Response('Hello')

The mere existence of configuration decoration doesn’t cause any
configuration registration to be performed. Before it has any effect on the
configuration of a Pyramid application, a configuration decoration
within application code must be found through a process known as a
scan.

For example, the pyramid.view.view_config decorator in the code
example above adds an attribute to the hello function, making it
available for a scan to find it later.

A scan of a module or a package and its subpackages
for decorations happens when the pyramid.config.Configurator.scan()
method is invoked: scanning implies searching for configuration declarations
in a package and its subpackages. For example:

Starting A Scan

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from paste.httpserver import serve
from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def hello(request):
 return Response('Hello')

if __name__ == '__main__':
 from pyramid.config import Configurator
 config = Configurator()
 config.scan()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

The scanning machinery imports each module and subpackage in a package or
module recursively, looking for special attributes attached to objects
defined within a module. These special attributes are typically attached to
code via the use of a decorator. For example, the
pyramid.view.view_config decorator can be attached to a function or
instance method.

Once scanning is invoked, and configuration decoration is found by
the scanner, a set of calls are made to a Configurator on your
behalf: these calls replace the need to add imperative configuration
statements that don’t live near the code being configured.

In the example above, the scanner translates the arguments to
pyramid.view.view_config into a call to the
pyramid.config.Configurator.add_view() method, effectively:

	1

	config.add_view(hello)

Declarative Configuration

A third mode of configuration can be employed when you create a
Pyramid application named declarative configuration. This mode uses
an XML language known as ZCML to represent configuration statements
rather than Python. ZCML is often used when application extensibility is
important. Most of the examples in the narrative portion of this
documentation concentrate on imperative configuration rather than ZCML, but
almost everything that can be configured imperatively can also be configured
via ZCML. See Declarative Configuration for more information about ZCML.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Creating Your First Pyramid Application

In this chapter, we will walk through the creation of a tiny Pyramid
application. After we’re finished creating the application, we’ll explain in
more detail how it works.

Note

If you’re a “theory-first” kind of person, you might choose to read
Resource Location and View Lookup and Views before diving into
the code that follows, but it’s not necessary if – like many programmers
– you’re willing to “go with the flow”.

Hello World, Goodbye World

Here’s one of the very simplest Pyramid applications, configured
imperatively:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from pyramid.config import Configurator
from pyramid.response import Response
from paste.httpserver import serve

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 config.add_view(goodbye_world, name='goodbye')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

When this code is inserted into a Python script named helloworld.py and
executed by a Python interpreter which has the Pyramid software
installed, an HTTP server is started on TCP port 8080:

$ python helloworld.py
serving on 0.0.0.0:8080 view at http://127.0.0.1:8080

When port 8080 is visited by a browser on the root URL (/), the server
will simply serve up the text “Hello world!” When visited by a browser on
the URL /goodbye, the server will serve up the text “Goodbye world!”

Now that we have a rudimentary understanding of what the application does,
let’s examine it piece-by-piece.

Imports

The above helloworld.py script uses the following set of import
statements:

	1
2
3

	from pyramid.config import Configurator
from pyramid.response import Response
from paste.httpserver import serve

The script imports the Configurator class from the
pyramid.config module. An instance of the
Configurator class is later used to configure your
Pyramid application.

The script uses the pyramid.response.Response class later in the
script to create a response object.

Like many other Python web frameworks, Pyramid uses the WSGI
protocol to connect an application and a web server together. The
paste.httpserver server is used in this example as a WSGI server for
convenience, as the paste package is a dependency of Pyramid
itself.

View Callable Declarations

The above script, beneath its set of imports, defines two functions: one
named hello_world and one named goodbye_world.

	1
2
3
4
5

	def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

These functions don’t do anything very difficult. Both functions accept a
single argument (request). The hello_world function does nothing but
return a response instance with the body Hello world!. The
goodbye_world function returns a response instance with the body
Goodbye world!.

Each of these functions is known as a view callable. A view callable
accepts a single argument, request. It is expected to return a
response object. A view callable doesn’t need to be a function; it
can be represented via another type of object, like a class or an instance,
but for our purposes here, a function serves us well.

A view callable is always called with a request object. A request
object is a representation of an HTTP request sent to Pyramid via the
active WSGI server.

A view callable is required to return a response object because a
response object has all the information necessary to formulate an actual HTTP
response; this object is then converted to text by the upstream WSGI
server and sent back to the requesting browser. To return a response, each
view callable creates an instance of the pyramid.response.Response
class. In the hello_world function, the string 'Hello world!' is
passed to the Response constructor as the body of the response. In the
goodbye_world function, the string 'Goodbye world!' is passed.

Note

As we’ll see in later chapters, returning a literal
response object from a view callable is not always required; we
can instead use a renderer in our view configurations. If we use
a renderer, our view callable is allowed to return a value that the
renderer understands, and the renderer generates a response on our behalf.

Application Configuration

In the above script, the following code represents the configuration of
this simple application. The application is configured using the previously
defined imports and function definitions, placed within the confines of an
if statement:

	1
2
3
4
5
6

	if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 config.add_view(goodbye_world, name='goodbye')
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Let’s break this down this piece-by-piece.

Configurator Construction

	1
2

	if __name__ == '__main__':
 config = Configurator()

The if __name__ == '__main__': line in the code sample above represents a
Python idiom: the code inside this if clause is not invoked unless the script
containing this code is run directly from the command line. For example, if
the file named helloworld.py contains the entire script body, the code
within the if statement will only be invoked when python
helloworld.py is executed from the operating system command line.

helloworld.py in this case is a Python module. Using the if
clause is necessary – or at least best practice – because code in any
Python module may be imported by another Python module. By using this idiom,
the script is indicating that it does not want the code within the if
statement to execute if this module is imported; the code within the if
block should only be run during a direct script execution.

The config = Configurator() line above creates an instance of the
Configurator class. The resulting config object
represents an API which the script uses to configure this particular
Pyramid application. Methods called on the Configurator will cause
registrations to be made in a application registry associated with
the application.

Adding Configuration

	1
2

	config.add_view(hello_world)
config.add_view(goodbye_world, name='goodbye')

Each of these lines calls the pyramid.config.Configurator.add_view()
method. The add_view method of a configurator registers a view
configuration within the application registry. A view
configuration represents a set of circumstances related to the
request that will cause a specific view callable to be
invoked. This “set of circumstances” is provided as one or more keyword
arguments to the add_view method. Each of these keyword arguments is
known as a view configuration predicate.

The line config.add_view(hello_world) registers the hello_world
function as a view callable. The add_view method of a Configurator must
be called with a view callable object or a dotted Python name as its
first argument, so the first argument passed is the hello_world function.
This line calls add_view with a default value for the predicate
argument, named name. The name predicate defaults to a value
equalling the empty string (''). This means that we’re instructing
Pyramid to invoke the hello_world view callable when the
view name is the empty string. We’ll learn in later chapters what a
view name is, and under which circumstances a request will have a
view name that is the empty string; in this particular application, it means
that the hello_world view callable will be invoked when the root URL
/ is visited by a browser.

The line config.add_view(goodbye_world, name='goodbye') registers the
goodbye_world function as a view callable. The line calls add_view
with the view callable as the first required positional argument, and a
predicate keyword argument name with the value 'goodbye'.
The name argument supplied in this view configuration implies
that only a request that has a view name of goodbye should cause
the goodbye_world view callable to be invoked. In this particular
application, this means that the goodbye_world view callable will be
invoked when the URL /goodbye is visited by a browser.

Each invocation of the add_view method registers a view
configuration. Each predicate provided as a keyword argument to the
add_view method narrows the set of circumstances which would cause the
view configuration’s callable to be invoked. In general, a greater number of
predicates supplied along with a view configuration will more strictly limit
the applicability of its associated view callable. When Pyramid
processes a request, the view callable with the most specific view
configuration (the view configuration that matches the most specific set of
predicates) is always invoked.

In this application, Pyramid chooses the most specific view callable
based only on view predicate applicability. The ordering of calls to
pyramid.config.Configurator.add_view() is never very important. We can
register goodbye_world first and hello_world second; Pyramid
will still give us the most specific callable when a request is dispatched to
it.

WSGI Application Creation

	1

	app = config.make_wsgi_app()

After configuring views and ending configuration, the script creates a WSGI
application via the pyramid.config.Configurator.make_wsgi_app()
method. A call to make_wsgi_app implies that all configuration is
finished (meaning all method calls to the configurator which set up views,
and various other configuration settings have been performed). The
make_wsgi_app method returns a WSGI application object that can
be used by any WSGI server to present an application to a requestor.
WSGI is a protocol that allows servers to talk to Python
applications. We don’t discuss WSGI in any depth within this book,
however, you can learn more about it by visiting wsgi.org [http://wsgi.org].

The Pyramid application object, in particular, is an instance of a
class representing a Pyramid router. It has a reference to
the application registry which resulted from method calls to the
configurator used to configure it. The router consults the registry
to obey the policy choices made by a single application. These policy
choices were informed by method calls to the Configurator made
earlier; in our case, the only policy choices made were implied by two calls
to its add_view method.

WSGI Application Serving

	1

	serve(app, host='0.0.0.0')

Finally, we actually serve the application to requestors by starting up a
WSGI server. We happen to use the paste.httpserver.serve() WSGI server
runner, passing it the app object (a router) as the application
we wish to serve. We also pass in an argument host=='0.0.0.0', meaning
“listen on all TCP interfaces.” By default, the Paste HTTP server listens
only on the 127.0.0.1 interface, which is problematic if you’re running
the server on a remote system and you wish to access it with a web browser
from a local system. We don’t specify a TCP port number to listen on; this
means we want to use the default TCP port, which is 8080.

When this line is invoked, it causes the server to start listening on TCP
port 8080. It will serve requests forever, or at least until we stop it by
killing the process which runs it (usually by pressing Ctrl-C in the
terminal we used to start it).

Conclusion

Our hello world application is one of the simplest possible Pyramid
applications, configured “imperatively”. We can see that it’s configured
imperatively because the full power of Python is available to us as we
perform configuration tasks.

References

For more information about the API of a Configurator object,
see pyramid.config.Configurator .

For more information about view configuration, see
Views.

An example of using declarative configuration (ZCML) instead of
imperative configuration to create a similar “hello world” is available
within Declarative Configuration.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Creating a Pyramid Project

As we saw in Creating Your First Pyramid Application, it’s possible to create a
Pyramid application completely manually. However, it’s usually more
convenient to use a template to generate a basic Pyramid
project.

A project is a directory that contains at least one package. You’ll
use a template to create a project, and you’ll create your application logic
within a package that lives inside the project. Even if your application is
extremely simple, it is useful to place code that drives the application
within a package, because a package is more easily extended with new code.
An application that lives inside a package can also be distributed more
easily than one which does not live within a package.

Pyramid comes with a variety of templates that you can use to generate
a project. Each template makes different configuration assumptions about
what type of application you’re trying to construct.

These templates are rendered using the PasteDeploy paster script,
and so therefore they are often referred to as “paster templates”.

Paster Templates Included with Pyramid

The convenience paster templates included with Pyramid differ from
each other on a number of axes:

	the persistence mechanism they offer (no persistence mechanism,
ZODB, or SQLAlchemy).

	the mechanism they use to map URLs to code (traversal or URL
dispatch).

	the type of configuration used (ZCML vs. imperative configuration).

	whether or not the pyramid_beaker library is relied upon as the
sessioning implementation (as opposed to no sessioning or default
sessioning).

The included templates are these:

	pyramid_starter

	URL mapping via traversal and no persistence mechanism.

	pyramid_starter_zcml

	URL mapping via traversal and no persistence mechanism, using
ZCML (declarative configuration).

	pyramid_zodb

	URL mapping via traversal and persistence via ZODB, using
ZCML (declarative configuration).

	pyramid_routesalchemy

	URL mapping via URL dispatch and persistence via
SQLAlchemy

	pyramid_alchemy

	URL mapping via traversal and persistence via
SQLAlchemy

	pylons_minimal

	URL mapping via URL dispatch and Pylons-style view handlers,
minimal setup, uses pyramid_beaker as a sessioning implementation.

	pylons_basic

	URL mapping via URL dispatch and Pylons-style view handlers, and
some extra functionality, uses pyramid_beaker as a sessioning
implementation.

	pylons_sqla

	URL mapping via URL dispatch and Pylons-style view handlers, some
extra functionality, and SQLAlchemy set up, uses pyramid_beaker as a
sessioning implementation.

Creating the Project

In Installing Pyramid, you created a virtual Python environment via
the virtualenv command. To start a Pyramid project, use
the paster facility installed within the virtualenv. In
Installing Pyramid we called the virtualenv directory env; the
following command assumes that our current working directory is that
directory.

We’ll choose the pyramid_starter template for this purpose.

$ bin/paster create -t pyramid_starter

The above command uses the paster command to create a project using the
pyramid_starter template. The paster create command creates project
from a template. To use a different template, such as
pyramid_routesalchemy, you’d just change the last argument. For example:

$ bin/paster create -t pyramid_routesalchemy

paster create will ask you a single question: the name of the
project. You should use a string without spaces and with only letters
in it. Here’s sample output from a run of paster create for a
project we name MyProject:

$ bin/paster create -t pyramid_starter
Selected and implied templates:
 pyramid#pyramid_starter pyramid starter project

Enter project name: MyProject
Variables:
 egg: MyProject
 package: myproject
 project: MyProject
Creating template pyramid
Creating directory ./MyProject
... more output ...
Running /Users/chrism/projects/pyramid/bin/python setup.py egg_info

Note

You can skip the interrogative question about a project
name during paster create by adding the project name to the
command line, e.g. paster create -t pyramid_starter MyProject.

Note

You may encounter an error when using paster create
if a dependent Python package is not installed. This will
result in a traceback ending in:

pkg_resources.DistributionNotFound: <package name>

Simply run bin/easy_install, with the missing package
name from the error message, to work around this issue.

As a result of invoking the paster create command, a project is created
in a directory named MyProject. That directory is a project
directory. The setup.py file in that directory can be used to distribute
your application, or install your application for deployment or development.

A PasteDeploy .ini file named development.ini will also be
created in the project directory. You will use this .ini file to
configure a server, to run your application, and to and debug your
application.

The MyProject project directory contains an additional subdirectory named
myproject (note the case difference) representing a Python
package which holds very simple Pyramid sample code. This is
where you’ll edit your application’s Python code and templates.

Installing your Newly Created Project for Development

To install a newly created project for development, you should cd to the
newly created project directory and use the Python interpreter from the
virtualenv you created during Installing Pyramid to invoke the
command python setup.py develop.py

The file named setup.py will be in the root of the paster-generated
project directory. The python you’re invoking should be the one that
lives in the bin directory of your virtual Python environment. Your
terminal’s current working directory must the the newly created project
directory. For example:

$../bin/python setup.py develop

Elided output from a run of this command is shown below:

$../bin/python setup.py develop
...
Finished processing dependencies for MyProject==0.0

This will install a distribution representing your project into the
interpreter’s library set so it can be found by import statements and by
PasteDeploy commands such as paster serve and paster pshell.

Running The Tests For Your Application

To run unit tests for your application, you should invoke them using the
Python interpreter from the virtualenv you created during
Installing Pyramid (the python command that lives in the bin
directory of your virtualenv):

$../bin/python setup.py test -q

Here’s sample output from a test run:

$ python setup.py test -q
running test
running egg_info
writing requirements to MyProject.egg-info/requires.txt
writing MyProject.egg-info/PKG-INFO
writing top-level names to MyProject.egg-info/top_level.txt
writing dependency_links to MyProject.egg-info/dependency_links.txt
writing entry points to MyProject.egg-info/entry_points.txt
reading manifest file 'MyProject.egg-info/SOURCES.txt'
writing manifest file 'MyProject.egg-info/SOURCES.txt'
running build_ext
..
--
Ran 1 test in 0.108s

OK

Note

The -q option is passed to the setup.py test command to limit the
output to a stream of dots. If you don’t pass -q, you’ll see more
verbose test result output (which normally isn’t very useful).

The tests themselves are found in the tests.py module in your paster
create -generated project. Within a project generated by the
pyramid_starter template, a single sample test exists.

The Interactive Shell

Once you’ve installed your program for development using setup.py
develop, you can use an interactive Python shell to examine your
Pyramid project’s resource and view objects from a
Python prompt. To do so, use your virtualenv’s paster pshell command.

The first argument to pshell is the path to your application’s .ini
file. The second is the app section name inside the .ini file which
points to your application as opposed to any other section within the
.ini file. For example, if your application .ini file might have a
[app:MyProject] section that looks like so:

	1
2
3
4
5
6
7

	[app:MyProject]
use = egg:MyProject
reload_templates = true
debug_authorization = false
debug_notfound = false
debug_templates = true
default_locale_name = en

If so, you can use the following command to invoke a debug shell using the
name MyProject as a section name:

[chrism@vitaminf shellenv]$../bin/paster pshell development.ini MyProject
Python 2.4.5 (#1, Aug 29 2008, 12:27:37)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help" for more information. "root" is the Pyramid app root object,
"registry" is the Pyramid registry object.
>>> root
<myproject.resources.MyResource object at 0x445270>
>>> registry
<Registry myproject>
>>> registry.settings['debug_notfound']
False
>>> from myproject.views import my_view
>>> from pyramid.request import Request
>>> r = Request.blank('/')
>>> my_view(r)
{'project': 'myproject'}

Two names are made available to the pshell user as globals: root and
registry. root is the the object returned by the default root
factory in your application. registry is the application
registry object associated with your project’s application (often accessed
within view code as request.registry).

If you have IPython [http://en.wikipedia.org/wiki/IPython] installed in
the interpreter you use to invoke the paster command, the pshell
command will use an IPython interactive shell instead of a standard Python
interpreter shell. If you don’t want this to happen, even if you have
IPython installed, you can pass the --disable-ipython flag to the
pshell command to use a standard Python interpreter shell
unconditionally.

[chrism@vitaminf shellenv]$../bin/paster pshell --disable-ipython \
 development.ini MyProject

Warning

You should always use a section name argument that refers to the actual
app section within the Paste configuration file that points at your
Pyramid application without any middleware wrapping. In
particular, a section name is inappropriate as the second argument to
pshell if the configuration section it names is a pipeline rather
than an app. For example, if you have the following .ini file
content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	[app:MyProject]
use = egg:MyProject
reload_templates = true
debug_authorization = false
debug_notfound = false
debug_templates = true
default_locale_name = en

[pipeline:main]
pipeline =
 egg:WebError#evalerror
 MyProject

Use MyProject instead of main as the section name argument to
pshell against the above .ini file (e.g. paster pshell
development.ini MyProject). If you use main instead, an error will
occur. Use the most specific reference to your application within the
.ini file possible as the section name argument.

Press Ctrl-D to exit the interactive shell (or Ctrl-Z on Windows).

Running The Project Application

Once a project is installed for development, you can run the application it
represents using the paster serve command against the generated
configuration file. In our case, this file is named development.ini:

$../bin/paster serve development.ini

Here’s sample output from a run of paster serve:

$../bin/paster serve development.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

By default, Pyramid applications generated from a paster template
will listen on TCP port 6543. You can shut down a server started this way by
pressing Ctrl-C.

During development, it’s often useful to run paster serve using its
--reload option. When --reload is passed to paster serve,
changes to any Python module your project uses will cause the server to
restart. This typically makes development easier, as changes to Python code
made within a Pyramid application is not put into effect until the
server restarts.

For example:

$../bin/paster serve development.ini --reload
Starting subprocess with file monitor
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

For more detailed information about the startup process, see
Startup. For more information about environment variables and
configuration file settings that influence startup and runtime behavior, see
Environment Variables and .ini File Settings.

Viewing the Application

Once your application is running via paster serve, you may visit
http://localhost:6543/ in your browser. You will see something in your
browser like what is displayed in the following image:

[image: ../_images/project.png]
This is the page shown by default when you visit an unmodified paster
create -generated pyramid_starter application in a browser.

Using an Alternate WSGI Server

The code generated by Pyramid paster templates assumes that you
will be using the paster serve command to start your application while
you do development. However, paster serve is by no means the only way
to start up and serve a Pyramid application. As we saw in
Creating Your First Pyramid Application, paster serve needn’t be invoked at all to run
a Pyramid application. The use of paster serve to run a
Pyramid application is purely conventional based on the output of
its paster templates.

Any WSGI server is capable of running a Pyramid
application. Some WSGI servers don’t require the PasteDeploy
framework’s paster serve command to do server process management at
all. Each WSGI server has its own documentation about how it
creates a process to run an application, and there are many of them, so we
cannot provide the details for each here. But the concepts are largely
the same, whatever server you happen to use.

One popular production alternative to a paster-invoked server is
mod_wsgi. You can also use mod_wsgi to serve your
Pyramid application using the Apache web server rather than any
“pure-Python” server that is started as a result of paster serve. See
Running a Pyramid Application under mod_wsgi for details. However, it is usually easier to
develop an application using a paster serve -invoked webserver, as
exception and debugging output will be sent to the console.

The Project Structure

The pyramid_starter template generated a project (named
MyProject), which contains a Python package. The package is
also named myproject, but it’s lowercased; the paster template
generates a project which contains a package that shares its name except for
case.

All Pyramid paster -generated projects share a similar structure.
The MyProject project we’ve generated has the following directory
structure:

MyProject/
|-- CHANGES.txt
|-- development.ini
|-- myproject
| |-- __init__.py
| |-- resources.py
| |-- static
| | |-- favicon.ico
| | |-- logo.png
| | `-- pylons.css
| |-- templates
| | `-- mytemplate.pt
| |-- tests.py
| `-- views.py
|-- README.txt
|-- setup.cfg
`-- setup.py

The MyProject Project

The MyProject project directory is the distribution and
deployment wrapper for your application. It contains both the myproject
package representing your application as well as files used to
describe, run, and test your application.

	CHANGES.txt describes the changes you’ve made to the application. It
is conventionally written in ReStructuredText format.

	README.txt describes the application in general. It is conventionally
written in ReStructuredText format.

	development.ini is a PasteDeploy configuration file that can
be used to execute your application.

	setup.cfg is a setuptools configuration file used by
setup.py.

	setup.py is the file you’ll use to test and distribute your
application. It is a standard setuptools setup.py file.

development.ini

The development.ini file is a PasteDeploy configuration file.
Its purpose is to specify an application to run when you invoke paster
serve, as well as the deployment settings provided to that application.

The generated development.ini file looks like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	[app:MyProject]
use = egg:MyProject
reload_templates = true
debug_authorization = false
debug_notfound = false
debug_routematch = false
debug_templates = true
default_locale_name = en

[pipeline:main]
pipeline =
 egg:WebError#evalerror
 MyProject

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

This file contains several “sections” including [app:MyProject],
[pipeline:main], and [server:main].

The [app:MyProject] section represents configuration for your
application. This section name represents the MyProject application (and
it’s an app -lication, thus app:MyProject)

The use setting is required in the [app:MyProject] section. The
use setting points at a setuptools entry point named
MyProject (the egg: prefix in egg:MyProject indicates that this
is an entry point URI specifier, where the “scheme” is “egg”).
egg:MyProject is actually shorthand for a longer spelling:
egg:MyProject#main. The #main part is omitted for brevity, as it is
the default.

setuptools Entry Points and PasteDeploy .ini Files

This part of configuration can be confusing so let’s try to clear things
up a bit. Take a look at the generated setup.py file for this
project. Note that the entry_point line in setup.py points at a
string which looks a lot like an .ini file. This string
representation of an .ini file has a section named
[paste.app_factory]. Within this section, there is a key named
main (the entry point name) which has a value myproject:main. The
key main is what our egg:MyProject#main value of the use
section in our config file is pointing at (although it is actually
shortened to egg:MyProject there). The value represents a
dotted Python name path, which refers to a callable in our
myproject package’s __init__.py module. In English, this entry
point can thus be referred to as a “Paste application factory in the
MyProject project which has the entry point named main where the
entry point refers to a main function in the mypackage module”.
If indeed if you open up the __init__.py module generated within the
myproject package, you’ll see a main function. This is the
function called by PasteDeploy when the paster serve command
is invoked against our application. It accepts a global configuration
object and returns an instance of our application.

The use setting is the only setting required in the [app:MyProject]
section unless you’ve changed the callable referred to by the
egg:MyProject entry point to accept more arguments: other settings you
add to this section are passed as keywords arguments to the callable
represented by this entry point (main in our __init__.py module).
You can provide startup-time configuration parameters to your application by
adding more settings to this section.

The reload_templates setting in the [app:MyProject] section is a
Pyramid -specific setting which is passed into the framework. If it
exists, and its value is true, Chameleon and Mako
template changes will not require an application restart to be detected. See
Automatically Reloading Templates for more information.

Warning

The reload_templates option should be turned off for
production applications, as template rendering is slowed when it is
turned on.

The debug_templates setting in the [app:MyProject] section is a
Pyramid -specific setting which is passed into the framework. If it
exists, and its value is true, Chameleon template exceptions will
contained more detailed and helpful information about the error than when
this value is false. See Nicer Exceptions in Chameleon Templates for more
information.

Warning

The debug_templates option should be turned off for
production applications, as template rendering is slowed when it is
turned on.

Various other settings may exist in this section having to do with debugging
or influencing runtime behavior of a Pyramid application. See
Environment Variables and .ini File Settings for more information about these settings.

[pipeline:main], has the name main signifying that this is the
default ‘application’ (although it’s actually a pipeline of middleware and an
application) run by paster serve when it is invoked against this
configuration file. The name main is a convention used by PasteDeploy
signifying that it the default application.

The [server:main] section of the configuration file configures a WSGI
server which listens on TCP port 6543. It is configured to listen on all
interfaces (0.0.0.0). The Paste#http server will create a new thread
for each request.

Note

In general, Pyramid applications generated from paster templates
should be threading-aware. It is not required that a Pyramid
application be nonblocking as all application code will run in its own
thread, provided by the server you’re using.

See the PasteDeploy documentation for more information about other
types of things you can put into this .ini file, such as other
applications, middleware and alternate WSGI server
implementations.

Note

You can add a [DEFAULT] section to your development.ini file.
Such a section should consists of global parameters that are shared by all
the applications, servers and middleware defined within the
configuration file. The values in a [DEFAULT] section will be passed
to your application’s main function as global_values.

setup.py

The setup.py file is a setuptools setup file. It is meant to be
run directly from the command line to perform a variety of functions, such as
testing your application, packaging, and distributing your application.

Note

setup.py is the defacto standard which Python developers use to
distribute their reusable code. You can read more about setup.py files
and their usage in the Setuptools documentation [http://peak.telecommunity.com/DevCenter/setuptools].

Our generated setup.py looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	import os

from setuptools import setup, find_packages

here = os.path.abspath(os.path.dirname(__file__))
README = open(os.path.join(here, 'README.txt')).read()
CHANGES = open(os.path.join(here, 'CHANGES.txt')).read()

requires = ['pyramid', 'WebError']

setup(name='MyProject',
 version='0.0',
 description='MyProject',
 long_description=README + '\n\n' + CHANGES,
 classifiers=[
 "Programming Language :: Python",
 "Framework :: Pylons",
 "Topic :: Internet :: WWW/HTTP",
 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application",
],
 author='',
 author_email='',
 url='',
 keywords='web pyramid pylons',
 packages=find_packages(),
 include_package_data=True,
 zip_safe=False,
 install_requires=requires,
 tests_require=requires,
 test_suite="myproject",
 entry_points = """\
 [paste.app_factory]
 main = myproject:main
 """,
 paster_plugins=['pyramid'],
)

The setup.py file calls the setuptools setup function, which does
various things depending on the arguments passed to setup.py on the
command line.

Within the arguments to this function call, information about your
application is kept. While it’s beyond the scope of this documentation to
explain everything about setuptools setup files, we’ll provide a whirlwind
tour of what exists in this file in this section.

Your application’s name can be any string; it is specified in the name
field. The version number is specified in the version value. A short
description is provided in the description field. The
long_description is conventionally the content of the README and CHANGES
file appended together. The classifiers field is a list of Trove [http://pypi.python.org/pypi?%3Aaction=list_classifiers] classifiers
describing your application. author and author_email are text fields
which probably don’t need any description. url is a field that should
point at your application project’s URL (if any).
packages=find_packages() causes all packages within the project to be
found when packaging the application. include_package_data will include
non-Python files when the application is packaged if those files are checked
into version control. zip_safe indicates that this package is not safe
to use as a zipped egg; instead it will always unpack as a directory, which
is more convenient. install_requires and tests_require indicate that
this package depends on the pyramid package. test_suite points at
the package for our application, which means all tests found in the package
will be run when setup.py test is invoked. We examined entry_points
in our discussion of the development.ini file; this file defines the
main entry point that represents our project’s application.

Usually you only need to think about the contents of the setup.py file
when distributing your application to other people, or when versioning your
application for your own use. For fun, you can try this command now:

$ python setup.py sdist

This will create a tarball of your application in a dist subdirectory
named MyProject-0.1.tar.gz. You can send this tarball to other people
who want to use your application.

Warning

By default, setup.py sdist does not place non-Python-source files in
generated tarballs. This means, in this case, that the
templates/mytemplate.pt file and the files in the static directory
are not packaged in the tarball. To allow this to happen, check all the
files that you’d like to be distributed along with your application’s
Python files into Subversion. After you do this, when you rerun
setup.py sdist, all files checked into the version control system will
be included in the tarball. If you don’t use Subversion, and instead use
a different version control system, you may need to install a setuptools
add-on such as setuptools-git or setuptools-hg for this behavior
to work properly.

setup.cfg

The setup.cfg file is a setuptools configuration file. It
contains various settings related to testing and internationalization:

Our generated setup.cfg looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	[nosetests]
match = ^test
nocapture = 1
cover-package = myproject
with-coverage = 1
cover-erase = 1

[compile_catalog]
directory = myproject/locale
domain = MyProject
statistics = true

[extract_messages]
add_comments = TRANSLATORS:
output_file = myproject/locale/MyProject.pot
width = 80

[init_catalog]
domain = MyProject
input_file = myproject/locale/MyProject.pot
output_dir = myproject/locale

[update_catalog]
domain = MyProject
input_file = myproject/locale/MyProject.pot
output_dir = myproject/locale
previous = true

The values in the default setup file allow various commonly-used
internationalization commands and testing commands to work more smoothly.

The myproject Package

The myproject package lives inside the MyProject
project. It contains:

	An __init__.py file signifies that this is a Python package.
It also contains code that helps users run the application, including a
main function which is used as a Paste entry point.

	A resources.py module, which contains resource code.

	A templates directory, which contains Chameleon (or
other types of) templates.

	A tests.py module, which contains unit test code for the
application.

	A views.py module, which contains view code for the
application.

These are purely conventions established by the paster template:
Pyramid doesn’t insist that you name things in any particular way.
However, it’s generally a good idea to follow Pyramid standards for naming,
so that other Pyramid developers can get up to speed quickly on your code
when you need help.

__init__.py

We need a small Python module that configures our application and which
advertises an entry point for use by our PasteDeploy .ini file.
This is the file named __init__.py. The presence of an __init__.py
also informs Python that the directory which contains it is a package.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator
from myproject.resources import Root

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(root_factory=Root, settings=settings)
 config.add_view('myproject.views.my_view',
 context='myproject.resources.Root',
 renderer='myproject:templates/mytemplate.pt')
 config.add_static_view('static', 'myproject:static')
 return config.make_wsgi_app()

	Line 1 imports the Configurator class from pyramid.config
that we use later.

	Line 2 imports the Root class from myproject.resources that we
use later.

	Lines 4-12 define a function that returns a Pyramid WSGI
application. This function is meant to be called by the
PasteDeploy framework as a result of running paster serve.

Within this function, application configuration is performed.

Lines 8-10 register a “default view” (a view that has no name
attribute). It is registered so that it will be found when the
context of the request is an instance of the
myproject.resources.Root class. The first argument to
add_view points at a Python function that does all the work for this
view, also known as a view callable, via a dotted Python
name. The view declaration also names a renderer, which in this case
is a template that will be used to render the result of the view callable.
This particular view declaration points at
myproject:templates/mytemplate.pt, which is a asset
specification that specifies the mytemplate.pt file within the
templates directory of the myproject package. The template file
it actually points to is a Chameleon ZPT template file.

Line 11 registers a static view, which will serve up the files from the
mypackage:static asset specification (the static
directory of the mypackage package).

Line 12 returns a WSGI application to the caller of the function
(Paste).

views.py

Much of the heavy lifting in a Pyramid application is done by view
callables. A view callable is the main tool of a Pyramid web
application developer; it is a bit of code which accepts a request
and which returns a response.

	1
2

	def my_view(request):
 return {'project':'MyProject'}

This bit of code was registered as the view callable within __init__.py
(via add_view). add_view said that the default URL for instances
that are of the class myproject.resources.Root should run this
myproject.views.my_view() function.

This view callable function is handed a single piece of information: the
request. The request is an instance of the WebOb
Request class representing the browser’s request to our server.

This view returns a dictionary. When this view is invoked, a
renderer converts the dictionary returned by the view into HTML, and
returns the result as the response. This view is configured to
invoke a renderer which uses a Chameleon ZPT template
(mypackage:templates/my_template.pt, as specified in the __init__.py
file call to add_view).

See Writing View Callables Which Use a Renderer for more information about how views,
renderers, and templates relate and cooperate.

Note

Because our development.ini has a reload_templates =
true directive indicating that templates should be reloaded when
they change, you won’t need to restart the application server to
see changes you make to templates. During development, this is
handy. If this directive had been false (or if the directive
did not exist), you would need to restart the application server
for each template change. For production applications, you should
set your project’s reload_templates to false to increase
the speed at which templates may be rendered.

resources.py

The resources.py module provides the resource data and behavior
for our application. Resources are objects which exist to provide site
structure in applications which use traversal to map URLs to code.
We write a class named Root that provides the behavior for the root
resource.

	1
2
3

	class Root(object):
 def __init__(self, request):
 self.request = request

	Lines 1-3 define the Root class. The Root class is a “root resource
factory” function that will be called by the Pyramid Router for
each request when it wants to find the root of the resource tree.

In a “real” application, the Root object would likely not be such a simple
object. Instead, it might be an object that could access some persistent
data store, such as a database. Pyramid doesn’t make any assumption
about which sort of data storage you’ll want to use, so the sample
application uses an instance of myproject.resources.Root to
represent the root.

static

This directory contains static assets which support the mytemplate.pt
template. It includes CSS and images.

templates/mytemplate.pt

The single Chameleon template exists in the project. Its contents
are too long to show here, but it displays a default page when rendered. It
is referenced by the call to add_view as the renderer attribute in
the __init__ file. See Writing View Callables Which Use a Renderer for more
information about renderers.

Templates are accessed and used by view configurations and sometimes by view
functions themselves. See Using Templates Directly and
Templates Used as Renderers via Configuration.

tests.py

The tests.py module includes unit tests for your application.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import unittest

from pyramid.config import Configurator
from pyramid import testing

class ViewTests(unittest.TestCase):
 def setUp(self):
 self.config = Configurator(autocommit=True)
 self.config.begin()

 def tearDown(self):
 self.config.end()

 def test_my_view(self):
 from myproject.views import my_view
 request = testing.DummyRequest()
 info = my_view(request)
 self.assertEqual(info['project'], 'MyProject')

This sample tests.py file has a single unit test defined within it. This
test is executed when you run python setup.py test. You may add more
tests here as you build your application. You are not required to write
tests to use Pyramid, this file is simply provided as convenience and
example.

See Unit, Integration, and Functional Testing for more information about writing Pyramid
unit tests.

Modifying Package Structure

It is best practice for your application’s code layout to not stray too much
from accepted Pyramid paster template defaults. If you refrain from changing
things very much, other Pyramid coders will be able to more quickly
understand your application. However, the code layout choices made for you
by a paster template are in no way magical or required. Despite the choices
made for you by any paster template, you can decide to lay your code out any
way you see fit.

For example, the configuration method named
add_view() requires you to pass a
dotted Python name or a direct object reference as the class or
function to be used as a view. By default, the pyramid_starter paster
template would have you add view functions to the views.py module in your
package. However, you might be more comfortable creating a views
directory, and adding a single file for each view.

If your project package name was myproject and you wanted to arrange all
your views in a Python subpackage within the myproject package
named views instead of within a single views.py file, you might:

	Create a views directory inside your mypackage package directory
(the same directory which holds views.py).

	Move the existing views.py file to a file inside the new views
directory named, say, blog.py.

	Create a file within the new views directory named __init__.py (it
can be empty, this just tells Python that the views directory is a
package.

Then change the __init__.py of your myproject project (not the
__init__.py you just created in the views directory, the one in its
parent directory). For example, from something like:

	1
2

	config.add_view('myproject.views.my_view',
 renderer='myproject:templates/mytemplate.pt')

To this:

	1
2

	config.add_view('myproject.views.blogs.my_view',
 renderer='myproject:templates/mytemplate.pt')

You can then continue to add files to the views directory, and refer to
views or handler classes/functions within those files via the dotted name
passed as the first argument to add_view. For example:

	1
2

	config.add_view('myproject.views.anothermodule.my_view',
 renderer='myproject:templates/anothertemplate.pt')

This pattern can be used to rearrage code referred to by any Pyramid API
argument which accepts a dotted Python name or direct object
reference.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Startup

When you cause a Pyramid application to start up in a console window,
you’ll see something much like this show up on the console:

$ paster serve myproject/MyProject.ini
Starting server in PID 16601.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

This chapter explains what happens between the time you press the “Return”
key on your keyboard after typing paster serve myproject/MyProject.ini
and the time the line serving on 0.0.0.0:6543 ... is output to your
console.

The Startup Process

The easiest and best-documented way to start and serve a Pyramid
application is to use the paster serve command against a
PasteDeploy .ini file. This uses the .ini file to infer
settings and starts a server listening on a port. For the purposes of this
discussion, we’ll assume that you are using this command to run your
Pyramid application.

Here’s a high-level time-ordered overview of what happens when you press
return after running paster serve development.ini.

	The PasteDeploy paster command is invoked under your shell
with the arguments serve and development.ini. As a result, the
PasteDeploy framework recognizes that it is meant to begin to run
and serve an application using the information contained within the
development.ini file.

	The PasteDeploy framework finds a section named either [app:main],
[pipeline:main], or [composite:main] in the .ini file. This
section represents the configuration of a WSGI application that
will be served. If you’re using a simple application (e.g.
[app:main]), the application entry point or dotted
Python name will be named on the use= line within the section’s
configuration. If, instead of a simple application, you’re using a WSGI
pipeline (e.g. a [pipeline:main] section), the application
named on the “last” element will refer to your Pyramid application.
If instead of a simple application or a pipeline, you’re using a Paste
“composite” (e.g. [composite:main]), refer to the documentation for
that particular composite to understand how to make it refer to your
Pyramid application.

	The application’s constructor (named by the entry point reference or
dotted Python name on the use= line of the section representing your
Pyramid application) is passed the key/value parameters mentioned
within the section in which it’s defined. The constructor is meant to
return a router instance, which is a WSGI application.

For Pyramid applications, the constructor will be a function named
main in the __init__.py file within the package in which
your application lives. If this function succeeds, it will return a
Pyramid router instance. Here’s the contents of an example
__init__.py module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from pyramid.config import Configurator
from myproject.resources import Root

def main(global_config, **settings):
 """ This function returns a Pyramid WSGI application.
 """
 config = Configurator(root_factory=Root, settings=settings)
 config.add_view('myproject.views.my_view',
 context='myproject.resources.Root',
 renderer='myproject:templates/mytemplate.pt')
 config.add_static_view('static', 'myproject:static')
 return config.make_wsgi_app()

Note that the constructor function accepts a global_config argument,
which is a dictionary of key/value pairs mentioned in the [DEFAULT]
section of an .ini file. It also accepts a **settings argument,
which collects another set of arbitrary key/value pairs. The arbitrary
key/value pairs received by this function in **settings will be
composed of all the key/value pairs that are present in the
[app:MyProject] section (except for the use= setting) when this
function is called by the PasteDeploy framework when you run
paster serve.

Our generated development.ini file looks like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	[app:MyProject]
use = egg:MyProject
reload_templates = true
debug_authorization = false
debug_notfound = false
debug_routematch = false
debug_templates = true
default_locale_name = en

[pipeline:main]
pipeline =
 egg:WebError#evalerror
 MyProject

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 6543

Begin logging configuration

[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s][%(threadName)s] %(message)s

End logging configuration

In this case, the myproject.__init__:main function referred to by the
entry point URI egg:MyProject (see development.ini for more
information about entry point URIs, and how they relate to callables),
will receive the key/value pairs {'reload_templates':'true',
'debug_authorization':'false', 'debug_notfound':'false',
'debug_routematch':'false', 'debug_templates':'true',
'default_locale_name':'en'}.

	The main function first constructs a
pyramid.config.Configurator instance, passing a root resource
factory (constructor) to it as its root_factory argument, and
settings dictionary captured via the **settings kwarg as its
settings argument.

The root resource factory is invoked on every request to retrieve the
application’s root resource. It is not called during startup, only when a
request is handled.

The settings dictionary contains all the options in the
[app:MyProject] section of our .ini file except the use option
(which is internal to Paste) such as reload_templates,
debug_authorization, etc.

	The main function then calls various methods on the an instance of the
class pyramid.config.Configurator method. The intent of
calling these methods is to populate an application registry,
which represents the Pyramid configuration related to the
application.

	The pyramid.config.Configurator.make_wsgi_app() method is called.
The result is a router instance. The router is associated with
the application registry implied by the configurator previously
populated by other methods run against the Configurator. The router is a
WSGI application.

	A pyramid.events.ApplicationCreated event is emitted (see
Using Events for more information about events).

	Assuming there were no errors, the main function in myproject
returns the router instance created by make_wsgi_app back to
PasteDeploy. As far as PasteDeploy is concerned, it is “just another WSGI
application”.

	PasteDeploy starts the WSGI server defined within the [server:main]
section. In our case, this is the Paste#http server (use =
egg:Paste#http), and it will listen on all interfaces (host =
0.0.0.0), on port number 6543 (port = 6543). The server code itself
is what prints serving on 0.0.0.0:6543 view at http://127.0.0.1:6543.
The server serves the application, and the application is running, waiting
to receive requests.

Deployment Settings

Note that an augmented version of the values passed as **settings to the
pyramid.config.Configurator constructor will be available in
Pyramid view callable code as request.registry.settings.
You can create objects you wish to access later from view code, and put them
into the dictionary you pass to the configurator as settings. They will
then be present in the request.registry.settings dictionary at
application runtime.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Resource Location and View Lookup

Pyramid uses two separate but cooperating subsystems to find and
invoke view callable code written by the application developer:
resource location and view lookup.

	First, a Pyramid resource location subsystem is given a
request; it is responsible for finding a resource object
based on information present in the request. When a resource is found via
resource location, it becomes known as the context.

	Next, using the context resource found by resource location and the
request, view lookup is then responsible for finding and
invoking a view callable. A view callable is a specific bit of
code written and registered by the application developer which receives the
request and which returns a response.

These two subsystems are used by Pyramid serially: first, a
resource location subsystem does its job. Then the result of
resource location is passed to the view lookup subsystem. The view
lookup system finds a view callable written by an application
developer, and invokes it. A view callable returns a response. The
response is returned to the requesting user.

There are two separate resource location subsystems in
Pyramid: traversal and URL dispatch. They can be used
separately or they can be combined. Three chapters which follow describe
resource location: Traversal,
URL Dispatch and Combining Traversal and URL Dispatch.

There is only one view lookup subsystem present in Pyramid.
Where appropriate, we will describe how view lookup interacts with context
finding. One chapter which follows describes view lookup:
Views.

Should I Use Traversal or URL Dispatch for Resource Location?

When you use Pyramid, you have a choice about how you’d like to
resolve URLs to code: you can use either traversal or URL
dispatch. The choice to use traversal vs. URL dispatch is largely
“religious”. Since Pyramid provides support for both approaches, you
can use either exclusively or combine them as you see fit.

URL dispatch is very straightforward. When you limit your
application to using URL dispatch, you know every URL that your application
might generate or respond to, all the URL matching elements are listed in a
single place, and you needn’t think about resource location or
view lookup at all.

URL dispatch can easily handle URLs such as
http://example.com/members/Chris, where it’s assumed that each item
“below” members in the URL represents a single member in some system.
You just match everything “below” members to a particular view
callable, e.g. /members/{memberid}.

However, URL dispatch is not very convenient if you’d like your URLs to
represent an arbitrary-depth hierarchy. For example, if you need to infer
the difference between sets of URLs such as these, where the document in
the first URL represents a PDF document, and /stuff/page in the second
represents an OpenOffice document in a “stuff” folder.

http://example.com/members/Chris/document
http://example.com/members/Chris/stuff/page

It takes more pattern matching assertions to be able to make hierarchies work
in URL-dispatch based systems, and some assertions just aren’t possible.
URL-dispatch based systems just don’t deal very well with URLs that represent
arbitrary-depth hierarchies.

URL dispatch tends to collapse the two steps of resource
location and view lookup into a single step. Thus, a URL can map
directly to a view callable. This makes URL dispatch eaiser to understand
than traversal, because traversal makes you understand how resource
location works. But explicitly locating a resource provides extra
flexibility. For example, it makes it possible to protect your application
with declarative context-sensitive instance-level authorization.

Unlike URL dispatch, traversal works well for URLs that represent
arbitrary-depth hierarchies. Since the path segments that compose a URL are
addressed separately, it becomes very easy to form URLs that represent
arbitrary depth hierarchies in a system that uses traversal. When you’re
willing to treat your application resources as a tree that can be traversed,
it also becomes easy to provide “instance-level security”: you just attach an
ACL security declaration to each resource in the tree. This is not
nearly as easy to do when using URL dispatch.

Traversal probably just doesn’t make any sense when you possess completely
“square” data stored in a relational database because it requires the
construction and maintenance of a resource tree and requires that the
developer think about mapping URLs to code in terms of traversing that tree.

We’ll examine both URL dispatch and traversal in the next two
chapters.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

URL Dispatch

URL dispatch provides a simple way to map URLs view code
using a simple pattern matching language. An ordered set of patterns is
checked one-by-one. If one of the patterns matches the path information
associated with a request, a particular view callable is invoked. If
no route matches, Pyramid falls back to trying to use
traversal to map the current request to a view callable.

The presence of calls to the pyramid.config.Configurator.add_route()
method within your application is a sign that you’re using URL
dispatch.

High-Level Operational Overview

If route configuration is present in an application, the Pyramid
Router checks every incoming request against an ordered set of URL
matching patterns present in a route map.

If any route pattern matches the information in the request provided
to Pyramid, Pyramid will shortcut traversal, and will
invoke view lookup using a context resource generated by the
route match.

However, if no route pattern matches the information in the request
provided to Pyramid, it will fail over to using traversal to
perform resource location and view lookup.

Technically, URL dispatch is a resource location mechanism (it finds
a context object). But ironically, using URL dispatch (instead of
traversal) allows you to avoid thinking about your application in
terms of “resources” entirely, because it allows you to directly map a
view callable to a route.

Route Configuration

Route configuration is the act of adding a new route to an
application. A route has a pattern, representing a pattern meant to match
against the PATH_INFO portion of a URL (the portion following the scheme
and port, e.g. /foo/bar in the URL http://localhost:8080/foo/bar),
and a route name, which is used by developers within a Pyramid
application to uniquely identify a particular route when generating a URL.
It also optionally has a factory, a set of route predicate
parameters, and a set of view parameters.

Configuring a Route via The add_route Configurator Method

The pyramid.config.Configurator.add_route() method adds a single
route configuration to the application registry. Here’s an
example:

"config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
from views import myview
config.add_route('myroute', '/prefix/{one}/{two}', view=myview)

Changed in version 1.0a4: Prior to 1.0a4, routes allow for a marker starting with a :, for
example /prefix/:one/:two. Starting in 1.0a4, this style is deprecated
in favor or {} usage which allows for additional functionality.

Route Configuration That Names a View Callable

When a route configuration declaration names a view attribute, the value
of the attribute will reference a view callable. This view callable
will be invoked when the route matches. A view callable, as described in
Views, is developer-supplied code that “does stuff” as the
result of a request. For more information about how to create view
callables, see Views.

Here’s an example route configuration that references a view callable:

	1
2
3
4
5

	# "config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
from myproject.views import myview
config.add_route('myroute', '/prefix/{one}/{two}', view=myview)

You can also pass a dotted Python name as the view argument
rather than an actual callable:

	1
2
3
4
5

	# "config" below is presumed to be an instance of the
pyramid.config.Configurator class; "myview" is assumed
to be a "view callable" function
config.add_route('myroute', '/prefix/{one}/{two}',
 view='myproject.views.myview')

When a route configuration names a view attribute, the view
callable named as that view attribute will always be found and invoked
when the associated route pattern matches during a request.

Route View Callable Registration and Lookup Details

The purpose of making it possible to specify a view callable within a route
configuration is to prevent developers from needing to deeply understand the
details of resource location and view lookup. When a route
names a view callable as a view argument, and a request enters the system
which matches the pattern of the route, the result is simple: the view
callable associated with the route is invoked with the request that caused
the invocation.

For most usage, you needn’t understand more than this; how it works is an
implementation detail. In the interest of completeness, however, we’ll
explain how it does work in the this section. You can skip it if you’re
uninterested.

When a view attribute is attached to a route configuration,
Pyramid ensures that a view configuration is registered that
will always be found when the route pattern is matched during a request. To
do so:

	A special route-specific interface is created at startup time for
each route configuration declaration.

	When a route configuration declaration mentions a view attribute, a
view configuration is registered at startup time. This view
configuration uses the route-specific interface as a request type.

	At runtime, when a request causes any route to match, the request
object is decorated with the route-specific interface.

	The fact that the request is decorated with a route-specific interface
causes the view lookup machinery to always use the view callable registered
using that interface by the route configuration to service requests that
match the route pattern.

In this way, we supply a shortcut to the developer. Under the hood, the
resource location and view lookup subsystems provided by
Pyramid are still being utilized, but in a way which does not require
a developer to understand either of them in detail. It also means that we
can allow a developer to combine URL dispatch and traversal
in various exceptional cases as documented in Combining Traversal and URL Dispatch.

Route Pattern Syntax

The syntax of the pattern matching language used by Pyramid URL
dispatch in the pattern argument is straightforward; it is close to that of
the Routes system used by Pylons.

The pattern used in route configuration may start with a slash character.
If the pattern does not start with a slash character, an implicit slash will
be prepended to it at matching time. For example, the following patterns are
equivalent:

{foo}/bar/baz

and:

/{foo}/bar/baz

A pattern segment (an individual item between / characters in the
pattern) may either be a literal string (e.g. foo) or it may be a
replacement marker (e.g. {foo}) or a certain combination of both. A
replacement marker does not need to be preceded by a / character.

A replacement marker is in the format {name}, where this means “accept
any characters up to the next non-alphanumeric character and use this as the
name matchdict value.” For example, the following pattern defines one
literal segment (“foo”) and two dynamic replacement markers (“baz”, and
“bar”):

foo/{baz}/{bar}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2 -> {'baz':u'1', 'bar':u'2'}
foo/abc/def -> {'baz':u'abc', 'bar':u'def'}

It will not match the following patterns however:

foo/1/2/ -> No match (trailing slash)
bar/abc/def -> First segment literal mismatch

The match for a segment replacement marker in a segment will be done only up
to the first non-alphanumeric character in the segment in the pattern. So,
for instance, if this route pattern was used:

foo/{name}.html

The literal path /foo/biz.html will match the above route pattern, and
the match result will be {'name':u'biz'}. However, the literal path
/foo/biz will not match, because it does not contain a literal .html
at the end of the segment represented by {name}.html (it only contains
biz, not biz.html).

To capture both segments, two replacement markers can be used:

foo/{name}.{ext}

The literal path /foo/biz.html will match the above route pattern, and
the match result will be {'name': 'biz', 'ext': 'html'}. This occurs
because the replacement marker {name} has a literal part of .
(period) between the other replacement marker {ext}.

It is possible to use two replacement markers without any literal characters
between them, for instance /{foo}{bar}. However, this would be a
nonsensical pattern without specifying a custom regular expression to
restrict what each marker captures.

Segments must contain at least one character in order to match a segment
replacement marker. For example, for the URL /abc/:

	/abc/{foo} will not match.

	/{foo}/ will match.

Note that values representing path segments matched with a {segment}
match will be url-unquoted and decoded from UTF-8 into Unicode within the
matchdict. So for instance, the following pattern:

foo/{bar}

When matching the following URL:

foo/La%20Pe%C3%B1a

The matchdict will look like so (the value is URL-decoded / UTF-8 decoded):

{'bar':u'La Pe\xf1a'}

If the pattern has a * in it, the name which follows it is considered a
“remainder match”. A remainder match must come at the end of the pattern.
Unlike segment replacement markers, it does not need to be preceded by a
slash. For example:

foo/{baz}/{bar}*fizzle

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ -> {'baz':'1', 'bar':'2', 'fizzle':()}
foo/abc/def/a/b/c -> {'baz':'abc', 'bar':'def', 'fizzle':('a', 'b', 'c')}

Note that when a *stararg remainder match is matched, the value put into
the matchdict is turned into a tuple of path segments representing the
remainder of the path. These path segments are url-unquoted and decoded from
UTF-8 into Unicode. For example, for the following pattern:

foo/*fizzle

When matching the following path:

/foo/La%20Pe%C3%B1a/a/b/c

Will generate the following matchdict:

{'fizzle':(u'La Pe\xf1a', u'a', u'b', u'c')}

By default, the *stararg will parse the remainder sections into a tuple
split by segment. Changing the regular expression used to match a marker can
also capture the remainder of the URL, for example:

foo/{baz}/{bar}{fizzle:.*}

The above pattern will match these URLs, generating the following matchdicts:

foo/1/2/ -> {'baz':'1', 'bar':'2', 'fizzle':()}
foo/abc/def/a/b/c -> {'baz':'abc', 'bar':'def', 'fizzle': 'a/b/c')}

This occurs because the default regular expression for a marker is [^/]+
which will match everything up to the first /, while {fizzle:.*} will
result in a regular expression match of .* capturing the remainder into a
single value.

Route Declaration Ordering

Route configuration declarations are evaluated in a specific order when a
request enters the system. As a result, the order of route configuration
declarations is very important.

The order that routes declarations are evaluated is the order in which they
are added to the application at startup time. This is unlike
traversal, which depends on emergent behavior which happens as a
result of traversing a resource tree.

For routes added via the pyramid.config.Configurator.add_route method,
the order that routes are evaluated is the order in which they are added to
the configuration imperatively.

For example, route configuration statements with the following patterns might
be added in the following order:

members/{def}
members/abc

In such a configuration, the members/abc pattern would never be
matched. This is because the match ordering will always match
members/{def} first; the route configuration with members/abc will
never be evaluated.

Route Factories

A “route” configuration declaration can mention a “factory”. When that route
matches a request, and a factory is attached to a route, the root
factory passed at startup time to the Configurator is ignored;
instead the factory associated with the route is used to generate a
root object. This object will usually be used as the context
resource of the view callable ultimately found via view lookup.

	1
2

	config.add_route('abc', '/abc', view='myproject.views.theview',
 factory='myproject.resources.root_factory')

The factory can either be a Python object or a dotted Python name (a
string) which points to such a Python object, as it is above.

In this way, each route can use a different factory, making it possible to
supply a different context resource object to the view related to
each particular route.

Supplying a different resource factory each route is useful when you’re
trying to use a Pyramid authorization policy to provide
declarative, “context sensitive” security checks; each resource can maintain
a separate ACL, as documented in
Using Pyramid Security With URL Dispatch. It is also useful when you wish to
combine URL dispatch with traversal as documented within
Combining Traversal and URL Dispatch.

Route Configuration Arguments

Route configuration add_route statements may specify a large number of
arguments.

Many of these arguments are route predicate arguments. A route
predicate argument specifies that some aspect of the request must be true for
the associated route to be considered a match during the route matching
process.

Other arguments are view configuration related arguments. These only have an
effect when the route configuration names a view.

Other arguments are name and factory. These arguments represent
neither predicates nor view configuration information.

Non-Predicate Arguments

	name

	The name of the route, e.g. myroute. This attribute is required. It
must be unique among all defined routes in a given application.

	factory

	A Python object (often a function or a class) or a dotted Python
name to such an object that will generate a Pyramid resource object
as the root when this route matches. For example,
mypackage.resources.MyFactoryClass. If this argument is not specified,
the traversal root factory will be used.

	traverse

	If you would like to cause the context resource to be something
other than the root resource object when this route matches, you
can spell a traversal pattern as the traverse argument. This traversal
pattern will be used as the traversal path: traversal will begin at the
root object implied by this route (either the global root, or the object
returned by the factory associated with this route).

The syntax of the traverse argument is the same as it is for
pattern. For example, if the pattern provided is
articles/{article}/edit, and the traverse argument provided is
/{article}, when a request comes in that causes the route to match in
such a way that the article match value is ‘1’ (when the request URI is
/articles/1/edit), the traversal path will be generated as /1.
This means that the root object’s __getitem__ will be called with the
name 1 during the traversal phase. If the 1 object exists, it will
become the context resource of the request.
Traversal has more information about traversal.

If the traversal path contains segment marker names which are not present
in the pattern argument, a runtime error will occur. The traverse
pattern should not contain segment markers that do not exist in the
pattern.

A similar combining of routing and traversal is available when a route is
matched which contains a *traverse remainder marker in its pattern (see
Using *traverse In a Route Pattern). The traverse argument
allows you to associate route patterns with an arbitrary traversal path
without using a a *traverse remainder marker; instead you can use other
match information.

Note that the traverse argument is ignored when attached to a route
that has a *traverse remainder marker in its pattern.

Predicate Arguments

	pattern

	The path of the route e.g. ideas/{idea}. This argument is required.
See route_path_pattern_syntax for information about the syntax of
route paths. If the path doesn’t match the current URL, route matching
continues.

Note

In earlier releases of this framework, this argument existed
as path. path continues to work as an alias for
pattern.

	xhr

	This value should be either True or False. If this value is
specified and is True, the request must possess an
HTTP_X_REQUESTED_WITH (aka X-Requested-With) header for this route
to match. This is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries. If this predicate returns
False, route matching continues.

	request_method

	A string representing an HTTP method name, e.g. GET, POST,
HEAD, DELETE, PUT. If this argument is not specified, this
route will match if the request has any request method. If this
predicate returns False, route matching continues.

	path_info

	This value represents a regular expression pattern that will be tested
against the PATH_INFO WSGI environment variable. If the regex matches,
this predicate will return True. If this predicate returns False,
route matching continues.

	request_param

	This value can be any string. A view declaration with this argument
ensures that the associated route will only match when the request has a
key in the request.params dictionary (an HTTP GET or POST
variable) that has a name which matches the supplied value. If the value
supplied as the argument has a = sign in it,
e.g. request_params="foo=123", then the key (foo) must both exist
in the request.params dictionary, and the value must match the right
hand side of the expression (123) for the route to “match” the current
request. If this predicate returns False, route matching continues.

	header

	This argument represents an HTTP header name or a header name/value pair.
If the argument contains a : (colon), it will be considered a
name/value pair (e.g. User-Agent:Mozilla/.* or Host:localhost). If
the value contains a colon, the value portion should be a regular
expression. If the value does not contain a colon, the entire value will
be considered to be the header name (e.g. If-Modified-Since). If the
value evaluates to a header name only without a value, the header specified
by the name must be present in the request for this predicate to be true.
If the value evaluates to a header name/value pair, the header specified by
the name must be present in the request and the regular expression
specified as the value must match the header value. Whether or not the
value represents a header name or a header name/value pair, the case of the
header name is not significant. If this predicate returns False, route
matching continues.

	accept

	This value represents a match query for one or more mimetypes in the
Accept HTTP request header. If this value is specified, it must be in
one of the following forms: a mimetype match token in the form
text/plain, a wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*. If any of the
forms matches the Accept header of the request, this predicate will be
true. If this predicate returns False, route matching continues.

	custom_predicates

	This value should be a sequence of references to custom predicate
callables. Use custom predicates when no set of predefined predicates does
what you need. Custom predicates can be combined with predefined
predicates as necessary. Each custom predicate callable should accept two
arguments: context and request and should return either True or
False after doing arbitrary evaluation of the context resource and/or
the request. If all callables return True, the associated route will
be considered viable for a given request. If any custom predicate returns
False, route matching continues. Note that the value context will
always be None when passed to a custom route predicate.

View-Related Arguments

	view

	A Python object or a dotted Python name to such an object that will
be used as a view callable when this route
matches. e.g. mypackage.views.my_view.

	view_context

	A class or an interface (or a dotted Python name to such an
object) that the context resource should possess for the view named
by the route to be used. If this attribute is not specified, the default
(None) will be used.

If the view argument is not provided, this argument has no effect.

This attribute can also be spelled as for_ or view_for.

	view_permission

	The permission name required to invoke the view associated with this route.
e.g. edit. (see Using Pyramid Security With URL Dispatch for more
information about permissions).

If the view attribute is not provided, this argument has no effect.

This argument can also be spelled as permission.

	view_renderer

	This is either a single string term (e.g. json) or a string implying a
path or asset specification (e.g. templates/views.pt). If the
renderer value is a single term (does not contain a dot .), the
specified term will be used to look up a renderer implementation, and that
renderer implementation will be used to construct a response from the view
return value. If the renderer term contains a dot (.), the specified
term will be treated as a path, and the filename extension of the last
element in the path will be used to look up the renderer implementation,
which will be passed the full path. The renderer implementation will be
used to construct a response from the view return value. See
Writing View Callables Which Use a Renderer for more information.

If the view argument is not provided, this argument has no effect.

This argument can also be spelled as renderer.

	view_attr

	The view machinery defaults to using the __call__ method of the view
callable (or the function itself, if the view callable is a function) to
obtain a response dictionary. The attr value allows you to vary the
method attribute used to obtain the response. For example, if your view
was a class, and the class has a method named index and you wanted to
use this method instead of the class’ __call__ method to return the
response, you’d say attr="index" in the view configuration for the
view. This is most useful when the view definition is a class.

If the view argument is not provided, this argument has no
effect.

	use_global_views

	When a request matches this route, and view lookup cannot find a view which
has a ‘route_name’ predicate argument that matches the route, try to fall
back to using a view that otherwise matches the context and request.

Custom Route Predicates

Each of the predicate callables fed to the custom_predicates argument of
pyramid.config.Configurator.add_route() must be a callable accepting
two arguments. The first argument passed to a custom predicate is a
dictionary conventionally named info. The second argument is the current
request object.

The info dictionary has a number of contained values: match is a
dictionary: it represents the arguments matched in the URL by the route.
route is an object representing the route which was matched (see
pyramid.interfaces.IRoute for the API of such a route object).

info['match'] is useful when predicates need access to the route match.
For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def any_of(segment_name, *allowed):
 def predicate(info, request):
 if info['match'][segment_name] in allowed:
 return True
 return predicate

num_one_two_or_three = any_of('num', 'one', 'two', 'three')

config.add_route('num', '/{num}',
 custom_predicates=(num_one_two_or_three,))

The above any_of function generates a predicate which ensures that the
match value named segment_name is in the set of allowable values
represented by allowed. We use this any_of function to generate a
predicate function named num_one_two_or_three, which ensures that the
num segment is one of the values one, two, or three , and use
the result as a custom predicate by feeding it inside a tuple to the
custom_predicates argument to
pyramid.config.Configurator.add_route().

A custom route predicate may also modify the match dictionary. For
instance, a predicate might do some type conversion of values:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 def integers(*segment_names):
 def predicate(info, request):
 match = info['match']
 for segment_name in segment_names:
 try:
 match[segment_name] = int(match[segment_name])
 except (TypeError, ValueError):
 pass
 return True
 return predicate

 ymd_to_int = integers('year', 'month', 'day')

 config.add_route('num', '/{year}/{month}/{day}',
 custom_predicates=(ymd_to_int,))

Note that a conversion predicate is still a predicate so it must return
True or False; a predicate that does only conversion, such as the
one we demonstrate above should unconditionally return True.

To avoid the try/except uncertainty, the route pattern can contain regular
expressions specifying requirements for that marker. For instance:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 def integers(*segment_names):
 def predicate(info, request):
 match = info['match']
 for segment_name in segment_names:
 match[segment_name] = int(match[segment_name])
 return True
 return predicate

 ymd_to_int = integers('year', 'month', 'day')

 config.add_route('num', '/{year:\d+}/{month:\d+}/{day:\d+}',
 custom_predicates=(ymd_to_int,))

Now the try/except is no longer needed because the route will not match at
all unless these markers match \d+ which requires them to be valid digits
for an int type conversion.

The match dictionary passed within info to each predicate attached to
a route will be the same dictionary. Therefore, when registering a custom
predicate which modifies the match dict, the code registering the
predicate should usually arrange for the predicate to be the last custom
predicate in the custom predicate list. Otherwise, custom predicates which
fire subsequent to the predicate which performs the match modification
will receive the modified match dictionary.

Warning

It is a poor idea to rely on ordering of custom predicates to build a
conversion pipeline, where one predicate depends on the side effect of
another. For instance, it’s a poor idea to register two custom
predicates, one which handles conversion of a value to an int, the next
which handles conversion of that integer to some custom object. Just do
all that in a single custom predicate.

The route object in the info dict is an object that has two useful
attributes: name and pattern. The name attribute is the route
name. The pattern attribute is the route pattern. An example of using
the route in a set of route predicates:

	1
2
3
4
5
6
7
8

	 def twenty_ten(info, request):
 if info['route'].name in ('ymd', 'ym', 'y'):
 return info['match']['year'] == '2010'

 config.add_route('y', '/{year}', custom_predicates=(twenty_ten,))
 config.add_route('ym', '/{year}/{month}', custom_predicates=(twenty_ten,))
 config.add_route('ymd', '/{year}/{month}/{day}',
 custom_predicates=(twenty_ten,))

The above predicate, when added to a number of route configurations ensures
that the year match argument is ‘2010’ if and only if the route name is
‘ymd’, ‘ym’, or ‘y’.

See also pyramid.interfaces.IRoute for more API documentation about
route objects.

Route Matching

The main purpose of route configuration is to match (or not match) the
PATH_INFO present in the WSGI environment provided during a request
against a URL path pattern.

The way that Pyramid does this is very simple. When a request enters
the system, for each route configuration declaration present in the system,
Pyramid checks the PATH_INFO against the pattern declared.

If any route matches, the route matching process stops. The request
is decorated with a special interface which describes it as a “route
request”, the context resource is generated, and the context and the
resulting request are handed off to view lookup. During view lookup,
if any view argument was provided within the matched route configuration,
the view callable it points to is called.

When a route configuration is declared, it may contain route
predicate arguments. All route predicates associated with a route
declaration must be True for the route configuration to be used for a
given request.

If any predicate in the set of route predicate arguments provided to
a route configuration returns False, that route is skipped and route
matching continues through the ordered set of routes.

If no route matches after all route patterns are exhausted, Pyramid
falls back to traversal to do resource location and
view lookup.

The Matchdict

When the URL pattern associated with a particular route configuration is
matched by a request, a dictionary named matchdict is added as an
attribute of the request object. Thus, request.matchdict will
contain the values that match replacement patterns in the pattern
element. The keys in a matchdict will be strings. The values will be
Unicode objects.

Note

If no route URL pattern matches, the matchdict object attached to the
request will be None.

The Matched Route

When the URL pattern associated with a particular route configuration is
matched by a request, an object named matched_route is added as an
attribute of the request object. Thus, request.matched_route
will be an object implementing the pyramid.interfaces.IRoute
interface which matched the request. The most useful attribute of the route
object is name, which is the name of the route that matched.

Note

If no route URL pattern matches, the matched_route object attached to
the request will be None.

Routing Examples

Let’s check out some examples of how route configuration statements might be
commonly declared, and what will happen if they are matched by the
information present in a request.

Example 1

The simplest route declaration which configures a route match to directly
result in a particular view callable being invoked:

	1

	 config.add_route('idea', 'site/{id}', view='mypackage.views.site_view')

When a route configuration with a view attribute is added to the system,
and an incoming request matches the pattern of the route configuration, the
view callable named as the view attribute of the route
configuration will be invoked.

In the case of the above example, when the URL of a request matches
/site/{id}, the view callable at the Python dotted path name
mypackage.views.site_view will be called with the request. In other
words, we’ve associated a view callable directly with a route pattern.

When the /site/{id} route pattern matches during a request, the
site_view view callable is invoked with that request as its sole
argument. When this route matches, a matchdict will be generated and
attached to the request as request.matchdict. If the specific URL
matched is /site/1, the matchdict will be a dictionary with a single
key, id; the value will be the string '1', ex.: {'id':'1'}.

The mypackage.views module referred to above might look like so:

	1
2
3
4

	from pyramid.response import Response

def site_view(request):
 return Response(request.matchdict['id'])

The view has access to the matchdict directly via the request, and can access
variables within it that match keys present as a result of the route pattern.

See Views for more information about views.

Example 2

Below is an example of a more complicated set of route statements you might
add to your application:

	1
2
3

	config.add_route('idea', 'ideas/{idea}', view='mypackage.views.idea_view')
config.add_route('user', 'users/{user}', view='mypackage.views.user_view')
config.add_route('tag', 'tags/{tags}', view='mypackage.views.tag_view')

The above configuration will allow Pyramid to service URLs in these
forms:

/ideas/{idea}
/users/{user}
/tags/{tag}

	When a URL matches the pattern /ideas/{idea}, the view callable
available at the dotted Python pathname mypackage.views.idea_view will
be called. For the specific URL /ideas/1, the matchdict generated
and attached to the request will consist of {'idea':'1'}.

	When a URL matches the pattern /users/{user}, the view callable
available at the dotted Python pathname mypackage.views.user_view will
be called. For the specific URL /users/1, the matchdict generated
and attached to the request will consist of {'user':'1'}.

	When a URL matches the pattern /tags/{tag}, the view callable available
at the dotted Python pathname mypackage.views.tag_view will be called.
For the specific URL /tags/1, the matchdict generated and attached
to the request will consist of {'tag':'1'}.

In this example we’ve again associated each of our routes with a view
callable directly. In all cases, the request, which will have a
matchdict attribute detailing the information found in the URL by the
process will be passed to the view callable.

Example 3

The context resource object passed in to a view found as the result
of URL dispatch will, by default, be an instance of the object returned by
the root factory configured at startup time (the root_factory
argument to the Configurator used to configure the application).

You can override this behavior by passing in a factory argument to the
pyramid.config.Configurator.add_route() method for a particular route.
The factory should be a callable that accepts a request and
returns an instance of a class that will be the context resource used by the
view.

An example of using a route with a factory:

	1
2
3

	config.add_route('idea', 'ideas/{idea}',
 view='myproject.views.idea_view',
 factory='myproject.resources.Idea')

The above route will manufacture an Idea resource as a context,
assuming that mypackage.resources.Idea resolves to a class that accepts a
request in its __init__. For example:

	1
2
3

	class Idea(object):
 def __init__(self, request):
 pass

In a more complicated application, this root factory might be a class
representing a SQLAlchemy model.

Example 4

It is possible to create a route declaration without a view attribute,
but associate the route with a view callable using a view
declaration.

	1
2

	config.add_route('idea', 'site/{id}')
config.add_view(route_name='idea', view='mypackage.views.site_view')

This set of configuration parameters creates a configuration completely
equivalent to this example provided in Example 1:

	1

	config.add_route('idea', 'site/{id}', view='mypackage.views.site_view')

In fact, the spelling which names a view attribute is just syntactic
sugar for the more verbose spelling which contains separate view and route
registrations.

More uses for this style of associating views with routes are explored in
Combining Traversal and URL Dispatch.

Matching the Root URL

It’s not entirely obvious how to use a route pattern to match the root URL
(“/”). To do so, give the empty string as a pattern in a call to
pyramid.config.Configurator.add_route():

	1

	config.add_route('root', '', view='mypackage.views.root_view')

Or provide the literal string / as the pattern:

	1

	config.add_route('root', '/', view='mypackage.views.root_view')

Generating Route URLs

Use the pyramid.url.route_url() function to generate URLs based on
route patterns. For example, if you’ve configured a route with the name
“foo” and the pattern “{a}/{b}/{c}”, you might do this.

	1
2

	from pyramid.url import route_url
url = route_url('foo', request, a='1', b='2', c='3')

This would return something like the string http://example.com/1/2/3 (at
least if the current protocol and hostname implied http:/example.com).
See the pyramid.url.route_url() API documentation for more information.

Redirecting to Slash-Appended Routes

For behavior like Django’s APPEND_SLASH=True, use the
append_slash_notfound_view() view as the Not Found
view in your application. Defining this view as the Not Found view
is a way to automatically redirect requests where the URL lacks a trailing
slash, but requires one to match the proper route. When configured, along
with at least one other route in your application, this view will be invoked
if the value of PATH_INFO does not already end in a slash, and if the
value of PATH_INFO plus a slash matches any route’s pattern. In this
case it does an HTTP redirect to the slash-appended PATH_INFO.

Let’s use an example, because this behavior is a bit magical. If the
append_slash_notfound_view is configured in your application and your
route configuration looks like so:

	1
2

	config.add_route('noslash', 'no_slash', view='myproject.views.no_slash')
config.add_route('hasslash', 'has_slash/', view='myproject.views.has_slash')

If a request enters the application with the PATH_INFO value of
/has_slash/, the second route will match. If a request enters the
application with the PATH_INFO value of /has_slash, a route will be
found by the slash-appending not found view. An HTTP redirect to
/has_slash/ will be returned to the user’s browser.

If a request enters the application with the PATH_INFO value of
/no_slash, the first route will match. However, if a request enters the
application with the PATH_INFO value of /no_slash/, no route will
match, and the slash-appending not found view will not find a matching
route with an appended slash.

Warning

You should not rely on this mechanism to redirect POST requests.
The redirect of the slash-appending not found view will turn a POST
request into a GET, losing any POST data in the original
request.

To configure the slash-appending not found view in your application, change
the application’s startup configuration, adding the following stanza:

	1
2

	config.add_view(context='pyramid.exceptions.NotFound',
 view='pyramid.view.append_slash_notfound_view')

See pyramid.view and Changing the Not Found View for more
information about the slash-appending not found view and for a more general
description of how to configure a not found view.

Custom Not Found View With Slash Appended Routes

There can only be one Not Found view in any Pyramid
application. Even if you use append_slash_notfound_view()
as the Not Found view, Pyramid still must generate a 404 Not Found
response when it cannot redirect to a slash-appended URL; this not found
response will be visible to site users.

If you don’t care what this 404 response looks like, and only you need
redirections to slash-appended route URLs, you may use the
append_slash_notfound_view() object as the Not Found view
as described above. However, if you wish to use a custom notfound view
callable when a URL cannot be redirected to a slash-appended URL, you may
wish to use an instance of the
AppendSlashNotFoundViewFactory class as the Not Found
view, supplying a view callable to be used as the custom notfound
view as the first argument to its constructor. For instance:

	1
2
3
4
5
6
7
8

	from pyramid.exceptions import NotFound
from pyramid.view import AppendSlashNotFoundViewFactory

def notfound_view(context, request):
 return HTTPNotFound('It aint there, stop trying!')

custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
config.add_view(custom_append_slash, context=NotFound)

The notfound_view supplied must adhere to the two-argument view callable
calling convention of (context, request) (context will be the
exception object).

Cleaning Up After a Request

Sometimes it’s required that some cleanup be performed at the end of a
request when a database connection is involved. When traversal is
used, this cleanup is often done as a side effect of the traversal
root factory. Often the root factory will insert an object into the
WSGI environment that performs some cleanup when its __del__ method is
called. When URL dispatch is used, however, no special root factory is
required, so sometimes that option is not open to you.

Instead of putting this cleanup logic in the root factory, however, you can
cause a subscriber to be fired when a new request is detected; the subscriber
can do this work.

For example, let’s say you have a mypackage Pyramid application
package that uses SQLAlchemy, and you’d like the current SQLAlchemy database
session to be removed after each request. Put the following in the
mypackage.__init__ module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 from mypackage.sql import DBSession

 class Cleanup:
 def __init__(self, cleaner):
 self.cleaner = cleaner
 def __del__(self):
 self.cleaner()

 def handle_teardown(event):
 environ = event.request.environ
 environ['mypackage.sqlcleaner'] = Cleanup(DBSession.remove)

Then add an event subscriber in your startup configuration:

	1
2

	config.add_subscriber('mypackage.handle_teardown',
 'pyramid.events.NewRequest')

Registering a handle_teardown subscriber will cause the DBSession to be
removed whenever the WSGI environment is destroyed (usually at the end of
every request).

Note

This is only an example. In particular, it is not necessary
to cause DBSession.remove to be called as the result of an
event listener in an application generated from any
Pyramid paster template, because these all use the
repoze.tm2 middleware. The cleanup done by
DBSession.remove is unnecessary when repoze.tm2 middleware
is in the WSGI pipeline.

Using Pyramid Security With URL Dispatch

Pyramid provides its own security framework which consults an
authorization policy before allowing any application code to be
called. This framework operates in terms of an access control list, which is
stored as an __acl__ attribute of a resource object. A common thing to
want to do is to attach an __acl__ to the resource object dynamically for
declarative security purposes. You can use the factory argument that
points at a factory which attaches a custom __acl__ to an object at its
creation time.

Such a factory might look like so:

	1
2
3
4
5
6

	class Article(object):
 def __init__(self, request):
 matchdict = request.matchdict
 article = matchdict.get('article', None)
 if article == '1':
 self.__acl__ = [(Allow, 'editor', 'view')]

If the route archives/{article} is matched, and the article number is
1, Pyramid will generate an Article context resource
with an ACL on it that allows the editor principal the view
permission. Obviously you can do more generic things than inspect the routes
match dict to see if the article argument matches a particular string;
our sample Article factory class is not very ambitious.

Note

See Security for more information about
Pyramid security and ACLs.

Debugging Route Matching

It’s useful to be able to take a peek under the hood when requests that enter
your application arent matching your routes as you expect them to. To debug
route matching, use the PYRAMID_DEBUG_ROUTEMATCH environment variable or the
debug_routematch configuration file setting (set either to true).
Details of the route matching decision for a particular request to the
Pyramid application will be printed to the stderr of the console
which you started the application from. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 [chrism@thinko pylonsbasic]$ PYRAMID_DEBUG_ROUTEMATCH=true \
 bin/paster serve development.ini
 Starting server in PID 13586.
 serving on 0.0.0.0:6543 view at http://127.0.0.1:6543
 2010-12-16 14:45:19,956 no route matched for url \
 http://localhost:6543/wontmatch
 2010-12-16 14:45:20,010 no route matched for url \
 http://localhost:6543/favicon.ico
 2010-12-16 14:41:52,084 route matched for url \
 http://localhost:6543/static/logo.png; \
 route_name: 'static/',

See Environment Variables and .ini File Settings for more information about how, and where to
set these values.

References

A tutorial showing how URL dispatch can be used to create a
Pyramid application exists in SQLAlchemy + URL Dispatch Wiki Tutorial (For Developers Familiar with Pylons 1).

Route configuration may also be added to the system via ZCML (see
Configuring a Route via ZCML).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Traversal

Traversal provides an alternative to using URL dispatch to
map a URL to a view callable. It is the act of locating a
context resource by walking over a resource tree, starting
from a root resource, using a request object as a source of
path information. Once a context resource is found, a view callable is
looked up and invoked.

Using Traversal to map a URL to code is optional. It is often less
easy to understand than URL dispatch, so if you’re a rank beginner, it
probably makes sense to use URL dispatch to map URLs to code instead of
traversal. In that case, you can skip this chapter.

A High-Level Overview of Traversal

A traversal uses the URL (Universal Resource Locator) to find a
resource. This is done by mapping each segment of the path portion
of the URL into a set of nested dictionary-like objects called the
resource tree. You might think of this as looking up files and
directories in a file system. Traversal walks down the path until it finds a
published “directory” or “file”. The resource we find as the result of a
traversal becomes the context. A separate view lookup
subsystem is used to then find some view code willing “publish” the context
resource.

Traversal Details

Traversal is dependent on information in a request object.
Every request object contains URL path information in the
PATH_INFO portion of the WSGI environment. The PATH_INFO
portion of the WSGI environment is the portion of a request’s URL following
the hostname and port number, but before any query string elements or
fragment element. For example the PATH_INFO portion of the URL
http://example.com:8080/a/b/c?foo=1 is /a/b/c.

Traversal treats the PATH_INFO segment of a URL as a sequence of path
segments. For example, the PATH_INFO string /a/b/c is converted to
the sequence ['a', 'b', 'c'].

After the path info is converted, a lookup is performed against the resource
tree for each path segment. Each lookup uses the __getitem__ method of a
resource in the tree.

For example, if the path info sequence is ['a', 'b', 'c']:

	Traversal pops the first element (a) from the path segment
sequence and attempts to call the root resource’s __getitem__ method
using that value (a) as an argument; we’ll presume it succeeds.

	When the root resource’s __getitem__ succeeds it will return another
resource, which we’ll call “A”. The context temporarily becomes
the “A” resource.

	The next segment (b) is popped from the path sequence, and the “A”
resource’s __getitem__ is called with that value (b) as an
argument; we’ll presume it succeeds.

	When the “A” resource’s __getitem__ succeeds it will return another
resource, which we’ll call “B”. The context temporarily becomes
the “B” resource.

This process continues until the path segment sequence is exhausted or a path
element cannot be resolved to a resource. In either case, a context
resource is chosen.

Traversal “stops” when it either reaches a leaf level resource in your
resource tree or when the path segments implied by the URL “run out”. The
resource that traversal “stops on” becomes the context. If at any
point during traversal any resource in the tree doesn’t have a
__getitem__ method, or if the __getitem__ method of a resource raises
a KeyError, traversal ends immediately, and that resource becomes the
context.

The results of a traversal also include a view name. The
view name is the first URL path segment in the set of PATH_INFO
segments “left over” in the path segment list popped by the traversal process
after traversal finds a context resource.

The combination of the context resource and the view name found via
traversal is used later in the same request by a separate Pyramid
subsystem – the view lookup subsystem – to find a view
callable later within the same request. How Pyramid performs view
lookup is explained within the Views chapter.

The Resource Tree

When your application uses traversal to resolve URLs to code, the
application must supply a resource tree to Pyramid. The
resource tree is a set of nested dictionary-like objects. The root of the
tree is represented by a root resource. The tree is effectively a
nested set of dictionary-like objects.

In order to supply a root resource for an application, at system startup
time, the Pyramid Router is configured with a callback known
as a root factory. The root factory is supplied by the application
developer as the root_factory argument to the application’s
Configurator.

Here’s an example of a simple root factory:

	1
2
3

	class Root(dict):
 def __init__(self, request):
 pass

Here’s an example of using this root factory within startup configuration, by
passing it to an instance of a Configurator named config:

	1

	config = Configurator(root_factory=Root)

Using the root_factory argument to a pyramid.config.Configurator
constructor tells your Pyramid application to call this root factory
to generate a root resource whenever a request enters the application. This
root factory is also known as the global root factory. A root factory can
alternately be passed to the Configurator as a dotted Python name
which refers to a root factory defined in a different module.

A root factory is passed a request object and it is expected to
return an object which represents the root of the resource tree. All
traversal will begin at this root resource. Usually a root factory
for a traversal-based application will be more complicated than the above
Root class; in particular it may be associated with a database connection
or another persistence mechanism.

If no root factory is passed to the Pyramid
Configurator constructor, or the root_factory is specified as the
value None, a default root factory is used. The default root factory
always returns a resource that has no child resources.

Emulating the Default Root Factory

For purposes of understanding the default root factory better, we’ll note
that you can emulate the default root factory by using this code as an
explicit root factory in your application setup:

	1
2
3
4
5

	class Root(object):
 def __init__(self, request):
 pass

config = Configurator(root_factory=Root)

The default root factory is just a really stupid object that has no
behavior or state. Using traversal against an application that
uses the resource tree supplied by the default root resource is not very
interesting, because the default root resource has no children. Its
availability is more useful when you’re developing an application using
URL dispatch.

Note

If the items contained within the resource tree are “persistent” (they
have state that lasts longer than the execution of a single process), they
become analogous to the concept of domain model objects used by
many other frameworks.

The resource tree consists of container resources and leaf resources.
There is only one difference between a container resource and a leaf
resource: container resources possess a __getitem__ method (making it
“dictionary-like”) while leaf resources do not. The __getitem__ method
was chosen as the signifying difference between the two types of resources
because the presence of this method is how Python itself typically determines
whether an object is “containerish” or not (dictionary objects are
“containerish”).

Each container resource is presumed to be willing to return a child resource
or raise a KeyError based on a name passed to its __getitem__.

Leaf-level instances must not have a __getitem__. If instances that
you’d like to be leaves already happen to have a __getitem__ through some
historical inequity, you should subclass these resource types and cause their
__getitem__ methods to simply raise a KeyError. Or just disuse them
and think up another strategy.

Usually, the traversal root is a container resource, and as such it
contains other resources. However, it doesn’t need to be a container.
Your resource tree can be as shallow or as deep as you require.

In general, the resource tree is traversed beginning at its root resource
using a sequence of path elements described by the PATH_INFO of the
current request; if there are path segments, the root resource’s
__getitem__ is called with the next path segment, and it is expected to
return another resource. The resulting resource’s __getitem__ is called
with the very next path segment, and it is expected to return another
resource. This happens ad infinitum until all path segments are exhausted.

The Traversal Algorithm

This section will attempt to explain the Pyramid traversal algorithm.
We’ll provide a description of the algorithm, a diagram of how the algorithm
works, and some example traversal scenarios that might help you understand
how the algorithm operates against a specific resource tree.

We’ll also talk a bit about view lookup. The Views
chapter discusses view lookup in detail, and it is the canonical
source for information about views. Technically, view lookup is a
Pyramid subsystem that is separated from traversal entirely. However,
we’ll describe the fundamental behavior of view lookup in the examples in the
next few sections to give you an idea of how traversal and view lookup
cooperate, because they are almost always used together.

A Description of The Traversal Algorithm

When a user requests a page from your traversal -powered application,
the system uses this algorithm to find a context resource and a
view name.

	The request for the page is presented to the Pyramid
router in terms of a standard WSGI request, which is
represented by a WSGI environment and a WSGI start_response callable.

	The router creates a request object based on the WSGI
environment.

	The root factory is called with the request. It returns
a root resource.

	The router uses the WSGI environment’s PATH_INFO information to
determine the path segments to traverse. The leading slash is stripped
off PATH_INFO, and the remaining path segments are split on the slash
character to form a traversal sequence.

The traversal algorithm by default attempts to first URL-unquote and then
Unicode-decode each path segment derived from PATH_INFO from its
natural byte string (str type) representation. URL unquoting is
performed using the Python standard library urllib.unquote function.
Conversion from a URL-decoded string into Unicode is attempted using the
UTF-8 encoding. If any URL-unquoted path segment in PATH_INFO is not
decodeable using the UTF-8 decoding, a TypeError is raised. A
segment will be fully URL-unquoted and UTF8-decoded before it is passed
it to the __getitem__ of any resource during traversal.

Thus, a request with a PATH_INFO variable of /a/b/c maps to the
traversal sequence [u'a', u'b', u'c'].

	Traversal begins at the root resource returned by the root
factory. For the traversal sequence [u'a', u'b', u'c'], the root
resource’s __getitem__ is called with the name a. Traversal
continues through the sequence. In our example, if the root resource’s
__getitem__ called with the name a returns a resource (aka
“resource a”), that resource’s __getitem__ is called with the
name b. If resource A returns a resource when asked for b,
“resource b“‘s __getitem__ is then asked for the name c, and
may return “resource c”.

	Traversal ends when a) the entire path is exhausted or b) when any
resouce raises a KeyError from its __getitem__ or c) when any
non-final path element traversal does not have a __getitem__ method
(resulting in a NameError) or d) when any path element is prefixed
with the set of characters @@ (indicating that the characters
following the @@ token should be treated as a view name).

	When traversal ends for any of the reasons in the previous step, the last
resource found during traversal is deemed to be the context. If
the path has been exhausted when traversal ends, the view name is
deemed to be the empty string (''). However, if the path was not
exhausted before traversal terminated, the first remaining path segment
is treated as the view name.

	Any subsequent path elements after the view name is found are
deemed the subpath. The subpath is always a sequence of path
segments that come from PATH_INFO that are “left over” after
traversal has completed.

Once the context resource, the view name, and associated
attributes such as the subpath are located, the job of
traversal is finished. It passes back the information it obtained to
its caller, the Pyramid Router, which subsequently invokes
view lookup with the context and view name information.

The traversal algorithm exposes two special cases:

	You will often end up with a view name that is the empty string as
the result of a particular traversal. This indicates that the view lookup
machinery should look up the default view. The default view is a
view that is registered with no name or a view which is registered with a
name that equals the empty string.

	If any path segment element begins with the special characters @@
(think of them as goggles), the value of that segment minus the goggle
characters is considered the view name immediately and traversal
stops there. This allows you to address views that may have the same names
as resource names in the tree unambiguously.

Finally, traversal is responsible for locating a virtual root. A
virtual root is used during “virtual hosting”; see the
Virtual Hosting chapter for information. We won’t speak more about
it in this chapter.

[image: ../_images/resourcetreetraverser.png]

Traversal Algorithm Examples

No one can be expected to understand the traversal algorithm by analogy and
description alone, so let’s examine some traversal scenarios that use
concrete URLs and resource tree compositions.

Let’s pretend the user asks for
http://example.com/foo/bar/baz/biz/buz.txt. The request’s PATH_INFO
in that case is /foo/bar/baz/biz/buz.txt. Let’s further pretend that
when this request comes in that we’re traversing the following resource tree:

/--
 |
 |-- foo
 |
 ----bar

Here’s what happens:

	traversal traverses the root, and attempts to find “foo”, which it
finds.

	traversal traverses “foo”, and attempts to find “bar”, which it
finds.

	traversal traverses bar, and attempts to find “baz”, which it does
not find (the “bar” resource raises a KeyError when asked for
“baz”).

The fact that it does not find “baz” at this point does not signify an error
condition. It signifies that:

	the context is the “bar” resource (the context is the last resource
found during traversal).

	the view name is baz

	the subpath is ('biz', 'buz.txt')

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines “bar”
to find out what “type” it is. Let’s say it finds that the context is a
Bar type (because “bar” happens to be an instance of the class Bar).
Using the view name (baz) and the type, view lookup asks the
application registry this question:

	Please find me a view callable registered using a view
configuration with the name “baz” that can be used for the class Bar.

Let’s say that view lookup finds no matching view type. In this
circumstance, the Pyramid router returns the result of the
not found view and the request ends.

However, for this tree:

/--
 |
 |-- foo
 |
 ----bar
 |
 ----baz
 |
 biz

The user asks for http://example.com/foo/bar/baz/biz/buz.txt

	traversal traverses “foo”, and attempts to find “bar”, which it
finds.

	traversal traverses “bar”, and attempts to find “baz”, which it
finds.

	traversal traverses “baz”, and attempts to find “biz”, which it
finds.

	traversal traverses “biz”, and attempts to find “buz.txt” which it
does not find.

The fact that it does not find a resource related to “buz.txt” at this point
does not signify an error condition. It signifies that:

	the context is the “biz” resource (the context is the last resource
found during traversal).

	the view name is “buz.txt”

	the subpath is an empty sequence (()).

At this point, traversal has ended, and view lookup begins.

Because it’s the “context” resource, the view lookup machinery examines the
“biz” resource to find out what “type” it is. Let’s say it finds that the
resource is a Biz type (because “biz” is an instance of the Python class
Biz). Using the view name (buz.txt) and the type, view
lookup asks the application registry this question:

	Please find me a view callable registered with a view
configuration with the name buz.txt that can be used for class
Biz.

Let’s say that question is answered by the application registry; in such a
situation, the application registry returns a view callable. The
view callable is then called with the current WebOb request
as the sole argument: request; it is expected to return a response.

The Example View Callables Accept Only a Request; How Do I Access the Context Resource?

Most of the examples in this book assume that a view callable is typically
passed only a request object. Sometimes your view callables need
access to the context resource, especially when you use
traversal. You might use a supported alternate view callable
argument list in your view callables such as the (context, request)
calling convention described in
Alternate View Callable Argument/Calling Conventions. But you don’t need to if you
don’t want to. In view callables that accept only a request, the
context resource found by traversal is available as the
context attribute of the request object, e.g. request.context.
The view name is available as the view_name attribute of the
request object, e.g. request.view_name. Other Pyramid
-specific request attributes are also available as described in
Special Attributes Added to the Request by Pyramid.

References

A tutorial showing how traversal can be used within a Pyramid
application exists in ZODB + Traversal Wiki Tutorial (For Developers Familiar with Zope).

See the Views chapter for detailed information about
view lookup.

The pyramid.traversal module contains API functions that deal with
traversal, such as traversal invocation from within application code.

The pyramid.url.resource_url() function generates a URL when given a
resource retrieved from a resource tree.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Views

One of the primary jobs of Pyramid is is to find and invoke a
view callable when a request reaches your application. View
callables are bits of code which do something interesting in response to a
request made to your application.

Note

A Pyramid view callable is often referred to in
conversational shorthand as a view. In this documentation,
however, we need to use less ambiguous terminology because there
are significant differences between view configuration, the code
that implements a view callable, and the process of view
lookup.

The chapter Resource Location and View Lookup describes how, using information
from the request, a context resource is computed. But the
context resource itself isn’t very useful without an associated view
callable. A view callable returns a response to a user, often using the
context resource to do so.

The job of actually locating and invoking the “best” view callable is
the job of the view lookup subsystem. The view lookup subsystem
compares the resource supplied by resource location and information
in the request against view configuration statements made by
the developer to choose the most appropriate view callable for a specific
set of circumstances.

This chapter provides documentation detailing the process of creating
view callables, documentation about performing view configuration, and
a detailed explanation of view lookup.

View Callables

No matter how a view callable is eventually found, all view callables
used by Pyramid must be constructed in the same way, and
must return the same kind of return value.

Most view callables accept a single argument named request. This
argument represents a Pyramid Request object. A request
object encapsulates a WSGI environment as represented to Pyramid by
the upstream WSGI server.

In general, a view callable must return a Pyramid Response
object.

Note

The above statement, though it sounds definitive, isn’t always
true. See Renderers for information related to using a
renderer to convert a non-Response view callable return value into
a Response object.

View callables can be functions, instances, or classes.

Defining a View Callable as a Function

One of the easiest way to define a view callable is to create a function that
accepts a single argument named request, and which returns a
Response object. For example, this is a “hello world” view callable
implemented as a function:

	1
2
3
4

	from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

Defining a View Callable as a Class

A view callable may also be represented by a Python class instead of a
function. When a view callable is a class, the calling semantics are
slightly different than when it is a function or another non-class callable.
When a view callable is a class, the class’ __init__ is called with a
request parameter. As a result, an instance of the class is created.
Subsequently, that instance’s __call__ method is invoked with no
parameters. Views defined as classes must have the following traits:

	an __init__ method that accepts a request argument.

	a __call__ (or other) method that accepts no parameters and which
returns a response.

For example:

	1
2
3
4
5
6
7
8

	from pyramid.response import Response

class MyView(object):
 def __init__(self, request):
 self.request = request

 def __call__(self):
 return Response('hello')

The request object passed to __init__ is the same type of request object
described in Defining a View Callable as a Function.

If you’d like to use a different attribute than __call__ to represent the
method expected to return a response, you can either:

	use an attr value as part of the configuration for the view. See
View Configuration Parameters. The same view callable class can be
used in different view configuration statements with different attr
values, each pointing at a different method of the class if you’d like the
class to represent a collection of related view callables.

	treat the class as a view handler by using it as the handler=
argument of a call to pyramid.config.Configurator.add_handler().

Alternate View Callable Argument/Calling Conventions

Usually, view callables are defined to accept only a single argument:
request. However, view callables may alternately be defined as classes,
functions, or any callable that accept two positional arguments: a
context resource as the first argument and a request as the
second argument.

The context and request arguments passed to a view function
defined in this style can be defined as follows:

context

The resource object found via tree traversal or URL
dispatch.

	request

	A Pyramid Request object representing the current WSGI request.

The following types work as view callables in this style:

	Functions that accept two arguments: context, and request,
e.g.:

	1
2
3
4

	from pyramid.response import Response

def view(context, request):
 return Response('OK')

	Classes that have an __init__ method that accepts context,
request and a __call__ which accepts no arguments, e.g.:

	1
2
3
4
5
6
7
8
9

	from pyramid.response import Response

class view(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 return Response('OK')

	Arbitrary callables that have a __call__ method that accepts
context, request, e.g.:

	1
2
3
4
5
6

	from pyramid.response import Response

class View(object):
 def __call__(self, context, request):
 return Response('OK')
view = View() # this is the view callable

This style of calling convention is most useful for traversal based
applications, where the context object is frequently used within the view
callable code itself.

No matter which view calling convention is used, the view code always has
access to the context via request.context.

View Callable Responses

A view callable may always return an object that implements the Pyramid
Response interface. The easiest way to return something that
implements the Response interface is to return a
pyramid.response.Response object instance directly. For example:

	1
2
3
4

	from pyramid.response import Response

def view(request):
 return Response('OK')

You don’t need to always use pyramid.response.Response to represent a
response. Pyramid provides a range of different “exception” classes
which can act as response objects too. For example, an instance of the class
pyramid.httpexceptions.HTTPFound is also a valid response object (see
Using a View Callable to Do an HTTP Redirect). A view can actually return any object that has the
following attributes.

	status

	The HTTP status code (including the name) for the response as a string.
E.g. 200 OK or 401 Unauthorized.

	headerlist

	A sequence of tuples representing the list of headers that should be
set in the response. E.g. [('Content-Type', 'text/html'),
('Content-Length', '412')]

	app_iter

	An iterable representing the body of the response. This can be a
list, e.g. ['<html><head></head><body>Hello
world!</body></html>'] or it can be a file-like object, or any
other sort of iterable.

These attributes form the notional “Pyramid Response interface”.

Using a View Callable to Do an HTTP Redirect

You can issue an HTTP redirect from within a view by returning a particular
kind of response.

	1
2
3
4

	from pyramid.httpexceptions import HTTPFound

def myview(request):
 return HTTPFound(location='http://example.com')

All exception types from the pyramid.httpexceptions module implement
the Response interface; any can be returned as the response from a
view. See pyramid.httpexceptions for the documentation for the
HTTPFound exception; it also includes other response types that imply
other HTTP response codes, such as HTTPUnauthorized for 401
Unauthorized.

Note

Although exception types from the pyramid.httpexceptions module are
in fact bona fide Python Exception types, the Pyramid view
machinery expects them to be returned by a view callable rather than
raised.

It is possible, however, in Python 2.5 and above, to configure an
exception view to catch these exceptions, and return an appropriate
pyramid.response.Response. The simplest such view could just
catch and return the original exception. See Exception Views for
more details.

Using Special Exceptions In View Callables

Usually when a Python exception is raised within a view callable,
Pyramid allows the exception to propagate all the way out to the
WSGI server which invoked the application.

However, for convenience, two special exceptions exist which are always
handled by Pyramid itself. These are
pyramid.exceptions.NotFound and pyramid.exceptions.Forbidden.
Both are exception classes which accept a single positional constructor
argument: a message.

If pyramid.exceptions.NotFound is raised within view code, the result
of the Not Found View will be returned to the user agent which
performed the request.

If pyramid.exceptions.Forbidden is raised within view code, the result
of the Forbidden View will be returned to the user agent which
performed the request.

In all cases, the message provided to the exception constructor is made
available to the view which Pyramid invokes as
request.exception.args[0].

Exception Views

The machinery which allows the special pyramid.exceptions.NotFound and
pyramid.exceptions.Forbidden exceptions to be caught by specialized
views as described in Using Special Exceptions In View Callables can also be used
by application developers to convert arbitrary exceptions to responses.

To register a view that should be called whenever a particular exception is
raised from with Pyramid view code, use the exception class or one of
its superclasses as the context of a view configuration which points at a
view callable you’d like to generate a response.

For example, given the following exception class in a module named
helloworld.exceptions:

	1
2
3

	class ValidationFailure(Exception):
 def __init__(self, msg):
 self.msg = msg

You can wire a view callable to be called whenever any of your other code
raises a hellworld.exceptions.ValidationFailure exception:

	1
2
3
4
5
6
7

	from helloworld.exceptions import ValidationFailure

@view_config(context=ValidationFailure)
def failed_validation(exc, request):
 response = Response('Failed validation: %s' % exc.msg)
 response.status_int = 500
 return response

Assuming that a scan was run to pick up this view registration, this
view callable will be invoked whenever a
helloworld.exceptions.ValidationError is raised by your application’s
view code. The same exception raised by a custom root factory or a custom
traverser is also caught and hooked.

Other normal view predicates can also be used in combination with an
exception view registration:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from pyramid.exceptions import NotFound
from pyramid.httpexceptions import HTTPNotFound

@view_config(context=NotFound, route_name='home')
def notfound_view(request):
 return HTTPNotFound()

The above exception view names the route_name of home, meaning that
it will only be called when the route matched has a name of home. You
can therefore have more than one exception view for any given exception in
the system: the “most specific” one will be called when the set of request
circumstances match the view registration.

The only view predicate that cannot be used successfully when creating
an exception view configuration is name. The name used to look up
an exception view is always the empty string. Views registered as
exception views which have a name will be ignored.

Note

Normal (i.e., non-exception) views registered against a context resource
type which inherits from Exception will work normally. When an
exception view configuration is processed, two views are registered. One
as a “normal” view, the other as an “exception” view. This means that you
can use an exception as context for a normal view.

Exception views can be configured with any view registration mechanism:
@view_config decorator, ZCML, or imperative add_view styles.

Handling Form Submissions in View Callables (Unicode and Character Set Issues)

Most web applications need to accept form submissions from web browsers and
various other clients. In Pyramid, form submission handling logic is
always part of a view. For a general overview of how to handle form
submission data using the WebOb API, see Request and Response Objects and
“Query and POST variables” within the WebOb documentation [http://pythonpaste.org/webob/reference.html#query-post-variables].
Pyramid defers to WebOb for its request and response implementations,
and handling form submission data is a property of the request
implementation. Understanding WebOb’s request API is the key to
understanding how to process form submission data.

There are some defaults that you need to be aware of when trying to handle
form submission data in a Pyramid view. Having high-order (i.e.,
non-ASCII) characters in data contained within form submissions is
exceedingly common, and the UTF-8 encoding is the most common encoding used
on the web for character data. Since Unicode values are much saner than
working with and storing bytestrings, Pyramid configures the
WebOb request machinery to attempt to decode form submission values
into Unicode from UTF-8 implicitly. This implicit decoding happens when view
code obtains form field values via the request.params, request.GET,
or request.POST APIs (see pyramid.request for details about these
APIs).

Note

Many people find the difference between Unicode and UTF-8 confusing.
Unicode is a standard for representing text that supports most of the
world’s writing systems. However, there are many ways that Unicode data
can be encoded into bytes for transit and storage. UTF-8 is a specific
encoding for Unicode, that is backwards-compatible with ASCII. This makes
UTF-8 very convenient for encoding data where a large subset of that data
is ASCII characters, which is largely true on the web. UTF-8 is also the
standard character encoding for URLs.

As an example, let’s assume that the following form page is served up to a
browser client, and its action points at some Pyramid view code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 </head>
 <form method="POST" action="myview">
 <div>
 <input type="text" name="firstname"/>
 </div>
 <div>
 <input type="text" name="lastname"/>
 </div>
 <input type="submit" value="Submit"/>
 </form>
</html>

The myview view code in the Pyramid application must expect that
the values returned by request.params will be of type unicode, as
opposed to type str. The following will work to accept a form post from
the above form:

	1
2
3

	def myview(request):
 firstname = request.params['firstname']
 lastname = request.params['lastname']

But the following myview view code may not work, as it tries to decode
already-decoded (unicode) values obtained from request.params:

	1
2
3
4
5

	def myview(request):
 # the .decode('utf-8') will break below if there are any high-order
 # characters in the firstname or lastname
 firstname = request.params['firstname'].decode('utf-8')
 lastname = request.params['lastname'].decode('utf-8')

For implicit decoding to work reliably, you should ensure that every form you
render that posts to a Pyramid view explicitly defines a charset
encoding of UTF-8. This can be done via a response that has a
;charset=UTF-8 in its Content-Type header; or, as in the form above,
with a meta http-equiv tag that implies that the charset is UTF-8 within
the HTML head of the page containing the form. This must be done
explicitly because all known browser clients assume that they should encode
form data in the same character set implied by Content-Type value of the
response containing the form when subsequently submitting that form. There is
no other generally accepted way to tell browser clients which charset to use
to encode form data. If you do not specify an encoding explicitly, the
browser client will choose to encode form data in its default character set
before submitting it, which may not be UTF-8 as the server expects. If a
request containing form data encoded in a non-UTF8 charset is handled by your
view code, eventually the request code accessed within your view will throw
an error when it can’t decode some high-order character encoded in another
character set within form data, e.g., when request.params['somename'] is
accessed.

If you are using the pyramid.response.Response class to generate a
response, or if you use the render_template_* templating APIs, the UTF-8
charset is set automatically as the default via the Content-Type header.
If you return a Content-Type header without an explicit charset, a
request will add a ;charset=utf-8 trailer to the Content-Type header
value for you, for response content types that are textual
(e.g. text/html, application/xml, etc) as it is rendered. If you are
using your own response object, you will need to ensure you do this yourself.

Note

Only the values of request params obtained via
request.params, request.GET or request.POST are decoded
to Unicode objects implicitly in the Pyramid default
configuration. The keys are still (byte) strings.

View Configuration: Mapping a Resource or URL Pattern to a View Callable

A developer makes a view callable available for use within a
Pyramid application via view configuration. A view
configuration associates a view callable with a set of statements that
determine the set of circumstances which must be true for the view callable
to be invoked.

A view configuration statement is made about information present in the
context resource and the request.

View configuration is performed in one of these ways:

	by running a scan against application source code which has a
pyramid.view.view_config decorator attached to a Python object as
per pyramid.view.view_config and
View Configuration Using the @view_config Decorator.

	by using the pyramid.config.Configurator.add_view() method as per
pyramid.config.Configurator.add_view() and
View Registration Using add_view().

	By specifying a view within a route configuration. View
configuration via a route configuration is performed by using the
pyramid.config.Configurator.add_route() method, passing a view
argument specifying a view callable.

	by using the pyramid.config.Configurator.add_handler() against a
view handler class (useful only for URL dispatch
applications).

Note

You can also add view configuration by adding a <view> or
<handler> declaration to ZCML used by your application as per
View Configuration Via ZCML, view, and
handler.

Note

ZCML users can use route to perform the same task.
See also Configuring a Route via ZCML.

View Configuration Parameters

All forms of view configuration accept the same general types of arguments.

Many arguments supplied during view configuration are view predicate
arguments. View predicate arguments used during view configuration are used
to narrow the set of circumstances in which view lookup will find a
particular view callable. In general, the fewer number of predicates which
are supplied to a particular view configuration, the more likely it is that
the associated view callable will be invoked. The greater the number
supplied, the less likely.

Some view configuration arguments are non-predicate arguments. These tend to
modify the response of the view callable or prevent the view callable from
being invoked due to an authorization policy. The presence of non-predicate
arguments in a view configuration does not narrow the circumstances in which
the view callable will be invoked.

Non-Predicate Arguments

	permission

	The name of a permission that the user must possess in order to
invoke the view callable. See Configuring View Security for
more information about view security and permissions.

If permission is not supplied, no permission is registered for this
view (it’s accessible by any caller).

	attr

	The view machinery defaults to using the __call__ method of the
view callable (or the function itself, if the view callable is a
function) to obtain a response. The attr value allows you to vary the
method attribute used to obtain the response. For example, if your view
was a class, and the class has a method named index and you wanted to
use this method instead of the class’ __call__ method to return the
response, you’d say attr="index" in the view configuration for the
view. This is most useful when the view definition is a class.

If attr is not supplied, None is used (implying the function itself
if the view is a function, or the __call__ callable attribute if the
view is a class).

	renderer

	Denotes the renderer implementation which will be used to construct
a response from the associated view callable’s return value. (see
also Renderers).

This is either a single string term (e.g. json) or a string implying a
path or asset specification (e.g. templates/views.pt) naming a
renderer implementation. If the renderer value does not
contain a dot (.), the specified string will be used to look up a
renderer implementation, and that renderer implementation will be used to
construct a response from the view return value. If the renderer value
contains a dot (.), the specified term will be treated as a path, and
the filename extension of the last element in the path will be used to look
up the renderer implementation, which will be passed the full path.

When the renderer is a path, although a path is usually just a simple
relative pathname (e.g. templates/foo.pt, implying that a template
named “foo.pt” is in the “templates” directory relative to the directory of
the current package), a path can be absolute, starting with a slash
on UNIX or a drive letter prefix on Windows. The path can alternately be a
asset specification in the form
some.dotted.package_name:relative/path, making it possible to address
template assets which live in a separate package.

The renderer attribute is optional. If it is not defined, the “null”
renderer is assumed (no rendering is performed and the value is passed back
to the upstream Pyramid machinery unmolested). Note that if the
view callable itself returns a response (see View Callable Responses),
the specified renderer implementation is never called.

	wrapper

	The view name of a different view configuration which will
receive the response body of this view as the request.wrapped_body
attribute of its own request, and the response returned by
this view as the request.wrapped_response attribute of its own request.
Using a wrapper makes it possible to “chain” views together to form a
composite response. The response of the outermost wrapper view will be
returned to the user. The wrapper view will be found as any view is found:
see View Lookup and Invocation. The “best” wrapper view will be found based on the
lookup ordering: “under the hood” this wrapper view is looked up via
pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper view is the
same context and request of the inner view.

If wrapper is not supplied, no wrapper view is used.

Predicate Arguments

These arguments modify view lookup behavior. In general, the more predicate
arguments that are supplied, the more specific, and narrower the usage of the
configured view.

	name

	The view name required to match this view callable. Read
Traversal to understand the concept of a view name.

If name is not supplied, the empty string is used (implying the default
view).

	context

	An object representing a Python class that the context resource
must be an instance of or the interface that the context
resource must provide in order for this view to be found and called. This
predicate is true when the context resource is an instance of the
represented class or if the context resource provides the
represented interface; it is otherwise false.

If context is not supplied, the value None, which matches any
resource, is used.

	route_name

	If route_name is supplied, the view callable will be invoked only when
the named route has matched.

This value must match the name of a route configuration
declaration (see URL Dispatch) that must match before this
view will be called. Note that the route configuration referred to by
route_name will usually have a *traverse token in the value of its
pattern, representing a part of the path that will be used by
traversal against the result of the route’s root factory.

If route_name is not supplied, the view callable will be have a chance
of being invoked if no other route was matched. This is when the
request/context pair found via resource location does not indicate
it matched any configured route.

	request_type

	This value should be an interface that the request must
provide in order for this view to be found and called.

If request_type is not supplied, the value None is used, implying
any request type.

This is an advanced feature, not often used by “civilians”.

	request_method

	This value can either be one of the strings GET, POST, PUT,
DELETE, or HEAD representing an HTTP REQUEST_METHOD. A view
declaration with this argument ensures that the view will only be called
when the request’s method attribute (aka the REQUEST_METHOD of the
WSGI environment) string matches the supplied value.

If request_method is not supplied, the view will be invoked regardless
of the REQUEST_METHOD of the WSGI environment.

	request_param

	This value can be any string. A view declaration with this argument
ensures that the view will only be called when the request has a
key in the request.params dictionary (an HTTP GET or POST
variable) that has a name which matches the supplied value.

If the value supplied has a = sign in it,
e.g. request_params="foo=123", then the key (foo) must both exist
in the request.params dictionary, and the value must match the right
hand side of the expression (123) for the view to “match” the current
request.

If request_param is not supplied, the view will be invoked without
consideration of keys and values in the request.params dictionary.

	containment

	This value should be a reference to a Python class or interface
that a parent object in the context resource’s lineage must provide
in order for this view to be found and called. The resources in your
resource tree must be “location-aware” to use this feature.

If containment is not supplied, the interfaces and classes in the
lineage are not considered when deciding whether or not to invoke the view
callable.

See Location-Aware Resources for more information about location-awareness.

	xhr

	This value should be either True or False. If this value is
specified and is True, the WSGI environment must possess an
HTTP_X_REQUESTED_WITH (aka X-Requested-With) header that has the
value XMLHttpRequest for the associated view callable to be found and
called. This is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries.

If xhr is not specified, the HTTP_X_REQUESTED_WITH HTTP header is
not taken into consideration when deciding whether or not to invoke the
associated view callable.

	accept

	The value of this argument represents a match query for one or more
mimetypes in the Accept HTTP request header. If this value is
specified, it must be in one of the following forms: a mimetype match token
in the form text/plain, a wildcard mimetype match token in the form
text/* or a match-all wildcard mimetype match token in the form
/. If any of the forms matches the Accept header of the request,
this predicate will be true.

If accept is not specified, the HTTP_ACCEPT HTTP header is not
taken into consideration when deciding whether or not to invoke the
associated view callable.

	header

	This value represents an HTTP header name or a header name/value pair.

If header is specified, it must be a header name or a
headername:headervalue pair.

If header is specified without a value (a bare header name only,
e.g. If-Modified-Since), the view will only be invoked if the HTTP
header exists with any value in the request.

If header is specified, and possesses a name/value pair
(e.g. User-Agent:Mozilla/.*), the view will only be invoked if the HTTP
header exists and the HTTP header matches the value requested. When the
headervalue contains a : (colon), it will be considered a
name/value pair (e.g. User-Agent:Mozilla/.* or Host:localhost).
The value portion should be a regular expression.

Whether or not the value represents a header name or a header name/value
pair, the case of the header name is not significant.

If header is not specified, the composition, presence or absence of
HTTP headers is not taken into consideration when deciding whether or not
to invoke the associated view callable.

	path_info

	This value represents a regular expression pattern that will be tested
against the PATH_INFO WSGI environment variable to decide whether or
not to call the associated view callable. If the regex matches, this
predicate will be True.

If path_info is not specified, the WSGI PATH_INFO is not taken into
consideration when deciding whether or not to invoke the associated view
callable.

	custom_predicates

	If custom_predicates is specified, it must be a sequence of references
to custom predicate callables. Use custom predicates when no set of
predefined predicates do what you need. Custom predicates can be combined
with predefined predicates as necessary. Each custom predicate callable
should accept two arguments: context and request and should return
either True or False after doing arbitrary evaluation of the
context resource and/or the request. If all callables return True, the
associated view callable will be considered viable for a given request.

If custom_predicates is not specified, no custom predicates are
used.

View Configuration Using the @view_config Decorator

For better locality of reference, you may use the
pyramid.view.view_config decorator to associate your view functions
with URLs instead of using ZCML or imperative configuration for the
same purpose.

Warning

Using this feature tends to slows down application startup slightly, as
more work is performed at application startup to scan for view
declarations.

Usage of the view_config decorator is a form of declarative
configuration, like ZCML, but in decorator form.
pyramid.view.view_config can be used to associate view
configuration information – as done via the equivalent imperative code or
ZCML – with a function that acts as a Pyramid view callable. All
arguments to the pyramid.config.Configurator.add_view() method (save
for the view argument) are available in decorator form and mean precisely
the same thing.

An example of the pyramid.view.view_config decorator might reside in
a Pyramid application module views.py:

	1
2
3
4
5
6
7
8

	from resources import MyResource
from pyramid.view import view_config
from pyramid.response import Response

@view_config(name='my_view', request_method='POST', context=MyResource,
 permission='read')
def my_view(request):
 return Response('OK')

Using this decorator as above replaces the need to add this imperative
configuration stanza:

	1
2

	config.add_view('.views.my_view', name='my_view', request_method='POST',
 context=MyResource, permission='read')

All arguments to view_config may be omitted. For example:

	1
2
3
4
5
6
7

	from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def my_view(request):
 """ My view """
 return Response()

Such a registration as the one directly above implies that the view name will
be my_view, registered with a context argument that matches any
resource type, using no permission, registered against requests with any
request method, request type, request param, route name, or containment.

The mere existence of a @view_config decorator doesn’t suffice to perform
view configuration. All that the decorator does is “annotate” the function
with your configuration declarations, it doesn’t process them. To make
Pyramid process your pyramid.view.view_config declarations,
you must do use the scan method of a
pyramid.config.Configurator:

	1
2
3

	# config is assumed to be an instance of the
pyramid.config.Configurator class
config.scan()

Note

See Scanning via ZCML for information about how to invoke a scan
via ZCML (if you’re not using imperative configuration).

Please see Configuration Decorations and Code Scanning for detailed information
about what happens when code is scanned for configuration declarations
resulting from use of decorators like pyramid.view.view_config.

See pyramid.config for additional API arguments to the
pyramid.config.Configurator.scan() method. For example, the method
allows you to supply a package argument to better control exactly which
code will be scanned.

@view_config Placement

A pyramid.view.view_config decorator can be placed in various points
in your application.

If your view callable is a function, it may be used as a function decorator:

	1
2
3
4
5
6

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(name='edit')
def edit(request):
 return Response('edited!')

If your view callable is a class, the decorator can also be used as a class
decorator in Python 2.6 and better (Python 2.5 and below do not support class
decorators). All the arguments to the decorator are the same when applied
against a class as when they are applied against a function. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

@view_config()
class MyView(object):
 def __init__(self, request):
 self.request = request

 def __call__(self):
 return Response('hello')

You can use the pyramid.view.view_config decorator as a simple
callable to manually decorate classes in Python 2.5 and below without the
decorator syntactic sugar, if you wish:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.response import Response
from pyramid.view import view_config

class MyView(object):
 def __init__(self, request):
 self.request = request

 def __call__(self):
 return Response('hello')

my_view = view_config()(MyView)

More than one pyramid.view.view_config decorator can be stacked on
top of any number of others. Each decorator creates a separate view
registration. For example:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from pyramid.response import Response

@view_config(name='edit')
@view_config(name='change')
def edit(request):
 return Response('edited!')

This registers the same view under two different names.

The decorator can also be used against class methods:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

class MyView(object):
 def __init__(self, request):
 self.request = request

 @view_config(name='hello')
 def amethod(self):
 return Response('hello')

When the decorator is used against a class method, a view is registered for
the class, so the class constructor must accept an argument list in one of
two forms: either it must accept a single argument request or it must
accept two arguments, context, request.

The method which is decorated must return a response.

Using the decorator against a particular method of a class is equivalent to
using the attr parameter in a decorator attached to the class itself.
For example, the above registration implied by the decorator being used
against the amethod method could be spelled equivalently as the below:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(attr='amethod', name='hello')
class MyView(object):
 def __init__(self, request):
 self.request = request

 def amethod(self):
 return Response('hello')

View Registration Using add_view()

The pyramid.config.Configurator.add_view() method within
pyramid.config is used to configure a view imperatively. The
arguments to this method are very similar to the arguments that you provide
to the @view_config decorator. For example:

	1
2
3
4
5
6
7
8

	from pyramid.response import Response

def hello_world(request):
 return Response('hello!')

config is assumed to be an instance of the
pyramid.config.Configurator class
config.add_view(hello_world, name='hello.html')

The first argument, view, is required. It must either be a Python object
which is the view itself or a dotted Python name to such an object.
All other arguments are optional. See
pyramid.config.Configurator.add_view() for more information.

Handler Registration Using add_handler()

Pyramid provides the special concept of a view handler. View
handlers are view classes that implement a number of methods, each of which
is a view callable as a convenience for URL dispatch users.

Note

View handlers are not useful when using traversal, only when using
url dispatch.

Using a view handler instead of a plain function or class view
callable makes it unnecessary to call
pyramid.config.Configurator.add_route() (and/or
pyramid.config.Configurator.add_view()) “by hand” multiple times,
making it more pleasant to register a collection of views as a single class
when using url dispatch. The view handler machinery also introduces
the concept of an action, which is used as a view predicate to
control which method of the handler is called. The method name is the
default action name of a handler view callable.

The concept of a view handler is analogous to a “controller” in Pylons 1.0.

The view handler class is initialized by Pyramid in the same manner as
a “plain” view class. Its __init__ is called with a request object (see
Defining a View Callable as a Class). It implements methods, each of which is a view
callable. When a request enters the system which corresponds with an
action related to one of its view callable methods, this method is called,
and it is expected to return a response.

Here’s an example view handler class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.response import Response

from pyramid.view import action

class Hello(object):
 def __init__(self, request):
 self.request = request

 def index(self):
 return Response('Hello world!')

 @action(renderer="mytemplate.mak")
 def bye(self):
 return {}

The pyramid.view.action decorator is used to fine-tune the view
parameters for each potential view callable which is a method of the handler.

Handlers are added to application configuration via the
pyramid.config.Configurator.add_handler() API. The
add_handler() method will scan a
view handler class and automatically set up view configurations for
its methods that represent “auto-exposed” view callable, or those that were
decorated explicitly with the action decorator. This
decorator is used to setup additional view configuration information for
individual methods of the class, and can be used repeatedly for a single view
method to register multiple view configurations for it.

	1
2

	from myapp.handlers import Hello
config.add_handler('hello', '/hello/{action}', handler=Hello)

This example will result in a route being added for the pattern
/hello/{action}, and each method of the Hello class will then be
examined to see if it should be registered as a potential view callable when
the /hello/{action} pattern matches. The value of {action} in the
route pattern will be used to determine which view should be called, and each
view in the class will be setup with a view predicate that requires a
specific action name. By default, the action name for a method of a
handler is the method name.

If the URL was /hello/index, the above example pattern would match, and,
by default, the index method of the Hello class would be called.

Alternatively, the action can be declared specifically for a URL to be
registered for a specific action name:

	1
2
3

	from myapp.handlers import Hello
config.add_handler('hello_index', '/hello/index',
 handler=Hello, action='index')

This will result one of the methods that are configured for the action of
‘index’ in the Hello handler class to be called. In this case the name of
the method is the same as the action name: index. However, this need not
be the case, as we will see below.

When calling add_handler(), an action
is required in either the route pattern or as a keyword argument, but
cannot appear in both places. A handler argument must also be
supplied, which can be either a asset specification or a Python
reference to the handler class. Additional keyword arguments are passed
directly through to pyramid.config.Configurator.add_route().

For example:

	1
2

	config.add_handler('hello', '/hello/{action}',
 handler='mypackage.handlers.MyHandler')

Multiple add_handler() calls can specify
the same handler, to register specific route names for different
handler/action combinations. For example:

	1
2
3
4

	config.add_handler('hello_index', '/hello/index',
 handler=Hello, action='index')
config.add_handler('bye_index', '/hello/bye',
 handler=Hello, action='bye')

Note

Handler configuration may also be added to the system via ZCML (see
Configuring a Handler via ZCML).

View Setup in the Handler Class

A handler class can have a single class level attribute called
__autoexpose__ which should be a regular expression or the value
None. It’s used to determine which method names will result in additional
view configurations being registered.

When add_handler() runs, every method in
the handler class will be searched and a view registered if the method name
matches the __autoexpose__ regular expression, or if the method was
decorated with action.

Every method in the handler class that has a name meeting the
__autoexpose__ regular expression will have a view registered for an
action name corresponding to the method name. This functionality can be
disabled by setting the __autoexpose__ attribute to None:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from pyramid.view import action

class Hello(object):
 __autoexpose__ = None

 def __init__(self, request):
 self.request = request

 @action()
 def index(self):
 return Response('Hello world!')

 @action(renderer="mytemplate.mak")
 def bye(self):
 return {}

With auto-expose effectively disabled, no views will be registered for a
method unless it is specifically decorated with
action.

Action Decorators in a Handler

The action decorator registers view configuration
information on the handler method, which is used by
add_handler() to setup the view
configuration.

All keyword arguments are recorded, and passed to
add_view(). Any valid keyword arguments
for add_view() can thus be used with the
action decorator to further restrict when the view
will be called.

One important difference is that a handler method can respond to an
action name that is different from the method name by passing in a
name argument.

Example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.view import action

class Hello(object):
 def __init__(self, request):
 self.request = request

 @action(name='index', renderer='created.mak', request_method='POST')
 def create(self):
 return {}

 @action(renderer="view_all.mak", request_method='GET')
 def index(self):
 return {}

This will register two views that require the action to be index,
with the additional view predicate requiring a specific request method.

It can be useful to decorate a single method multiple times with
action. Each action decorator will register a new view
for the method. By specifying different names and renderers for each action,
the same view logic can be exposed and rendered differently on multiple URLs.

Example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from pyramid.view import action

class Hello(object):
 def __init__(self, request):
 self.request = request

 @action(name='home', renderer='home.mak')
 @action(name='about', renderer='about.mak')
 def show_template(self):
 # prep some template vars
 return {}

in the config
config.add_handler('hello', '/hello/{action}', handler=Hello)

With this configuration, the url /hello/home will find a view
configuration that results in calling the show_template method, then
rendering the template with home.mak, and the url /hello/about will
call the same method and render the about.mak template.

Using Resource Interfaces In View Configuration

Instead of registering your views with a context that names a Python
resource class, you can optionally register a view callable with a
context which is an interface. An interface can be attached
arbitrarily to any resource object. View lookup treats context interfaces
specially, and therefore the identity of a resource can be divorced from that
of the class which implements it. As a result, associating a view with an
interface can provide more flexibility for sharing a single view between two
or more different implementations of a resource type. For example, if two
resource objects of different Python class types share the same interface,
you can use the same view configuration to specify both of them as a
context.

In order to make use of interfaces in your application during view dispatch,
you must create an interface and mark up your resource classes or instances
with interface declarations that refer to this interface.

To attach an interface to a resource class, you define the interface and
use the zope.interface.implements() function to associate the interface
with the class.

	1
2
3
4
5
6
7
8

	from zope.interface import Interface
from zope.interface import implements

class IHello(Interface):
 """ A marker interface """

class Hello(object):
 implements(IHello)

To attach an interface to a resource instance, you define the interface and
use the zope.interface.alsoProvides() function to associate the
interface with the instance. This function mutates the instance in such a
way that the interface is attached to it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from zope.interface import Interface
from zope.interface import alsoProvides

class IHello(Interface):
 """ A marker interface """

class Hello(object):
 pass

def make_hello():
 hello = Hello()
 alsoProvides(hello, IHello)
 return hello

Regardless of how you associate an interface, with a resource instance, or a
resource class, the resulting code to associate that interface with a view
callable is the same. Assuming the above code that defines an IHello
interface lives in the root of your application, and its module is named
“resources.py”, the interface declaration below will associate the
mypackage.views.hello_world view with resources that implement, or
provide, this interface.

	1
2
3
4

	# config is an instance of pyramid.config.Configurator

config.add_view('mypackage.views.hello_world', name='hello.html',
 context='mypackage.resources.IHello')

Any time a resource that is determined to be the context provides
this interface, and a view named hello.html is looked up against it as
per the URL, the mypackage.views.hello_world view callable will be
invoked.

Note, in cases where a view is registered against a resource class, and a
view is also registered against an interface that the resource class
implements, an ambiguity arises. Views registered for the resource class take
precedence over any views registered for any interface the resource class
implements. Thus, if one view configuration names a context of both the
class type of a resource, and another view configuration names a context
of interface implemented by the resource’s class, and both view
configurations are otherwise identical, the view registered for the context’s
class will “win”.

For more information about defining resources with interfaces for use within
view configuration, see Resources Which Implement Interfaces.

Configuring View Security

If an authorization policy is active, any permission attached
to a view configuration found during view lookup will be verified.
This will ensure that the currently authenticated user possesses that
permission against the context resource before the view function is
actually called. Here’s an example of specifying a permission in a view
configuration using pyramid.config.Configurator.add_view():

	1
2
3
4

	# config is an instance of pyramid.config.Configurator

config.add_view('myproject.views.add_entry', name='add.html',
 context='myproject.resources.IBlog', permission='add')

When an authorization policy is enabled, this view will be protected
with the add permission. The view will not be called if the user does
not possess the add permission relative to the current context.
Instead the forbidden view result will be returned to the client as
per Protecting Views with Permissions.

View Lookup and Invocation

View lookup is the Pyramid subsystem responsible for finding
an invoking a view callable. The view lookup subsystem is passed a
context and a:term:request object.

View configuration information stored within in the
application registry is compared against the context and request by
the view lookup subsystem in order to find the “best” view callable for the
set of circumstances implied by the context and request.

Predicate attributes of view configuration can be thought of like
“narrowers”. In general, the greater number of predicate attributes
possessed by a view’s configuration, the more specific the circumstances need
to be before the registered view callable will be invoked.

For any given request, a view with five predicates will always be found and
evaluated before a view with two, for example. All predicates must match for
the associated view to be called.

This does not mean however, that Pyramid “stops looking” when it finds
a view registration with predicates that don’t match. If one set of view
predicates does not match, the “next most specific” view (if any) view is
consulted for predicates, and so on, until a view is found, or no view can be
matched up with the request. The first view with a set of predicates all of
which match the request environment will be invoked.

If no view can be found with predicates which allow it to be matched up with
the request, Pyramid will return an error to the user’s browser,
representing a “not found” (404) page. See Changing the Not Found View
for more information about changing the default notfound view.

NotFound Errors

It’s useful to be able to debug NotFound error responses when they
occur unexpectedly due to an application registry misconfiguration. To debug
these errors, use the PYRAMID_DEBUG_NOTFOUND environment variable or the
debug_notfound configuration file setting. Details of why a view was not
found will be printed to stderr, and the browser representation of the
error will include the same information. See Environment Variables and .ini File Settings for
more information about how, and where to set these values.

Further Information

The chapter entitled Renderers explains how to create
functions (or instances/classes) which do not return a Response
object, yet which still can be used as view callables.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Renderers

In the Views chapter, we said that a view callable must
return a Response object. We lied. A renderer is a service
that attempts to convert a non-Response return value of a function, class, or
instance that acts as a view callable to a Response object.

Overview

A view needn’t always return a Response object. If a view happens to
return something which does not implement the Pyramid Response interface,
Pyramid will attempt to use a renderer to construct a
response. For example:

	1
2
3
4
5

	from pyramid.response import Response
from pyramid.view import view_config

def hello_world(request):
 return {'content':'Hello!'}

The above example returns a dictionary from the view callable. A
dictionary does not implement the Pyramid response interface, so you might
believe that this example would fail. However, since a renderer is
associated with the view callable through its view configuration (in
this case, using a renderer argument passed to
pyramid.view.view_config()), if the view does not return a Response
object, the renderer will attempt to convert the result of the view to a
response on the developer’s behalf.

Of course, if no renderer is associated with a view’s configuration,
returning anything except an object which implements the Response interface
will result in an error. And, if a renderer is used, whatever is returned
by the view must be compatible with the particular kind of renderer used, or
an error may occur during view invocation.

One exception exists: it is always OK to return a Response object, even
when a renderer is configured. If a view callable returns a response
object from a view that is configured with a renderer, the renderer is
bypassed entirely.

Various types of renderers exist, including serialization renderers
and renderers which use templating systems. See also
Writing View Callables Which Use a Renderer.

Writing View Callables Which Use a Renderer

As we’ve seen, view callables needn’t always return a Response object.
Instead, they may return an arbitrary Python object, with the expectation
that a renderer will convert that object into a response instance on
your behalf. Some renderers use a templating system; other renderers use
object serialization techniques.

View configuration can vary the renderer associated with a view callable via
the renderer attribute. For example, this call to
pyramid.config.Configurator.add_view() associates the json renderer
with a view callable:

	1

	config.add_view('myproject.views.my_view', renderer='json')

When this configuration is added to an application, the
myproject.views.my_view view callable will now use a json renderer,
which renders view return values to a JSON response serialization.

Other built-in renderers include renderers which use the Chameleon
templating language to render a dictionary to a response.

If the view callable associated with a view configuration
returns a Response object directly (an object with the attributes status,
headerlist and app_iter), any renderer associated with the view
configuration is ignored, and the response is passed back to Pyramid
unmolested. For example, if your view callable returns an instance of the
pyramid.httpexceptions.HTTPFound class as a response, no renderer
will be employed.

	1
2
3
4

	from pyramid.httpexceptions import HTTPFound

def view(request):
 return HTTPFound(location='http://example.com') # any renderer avoided

Views which use a renderer can vary non-body response attributes (such as
headers and the HTTP status code) by attaching properties to the request.
See Varying Attributes of Rendered Responses.

Additional renderers can be added by developers to the system as necessary
(see Adding and Overriding Renderers).

Built-In Renderers

Several built-in renderers exist in Pyramid. These renderers can be
used in the renderer attribute of view configurations.

string: String Renderer

The string renderer is a renderer which renders a view callable result to
a string. If a view callable returns a non-Response object, and the
string renderer is associated in that view’s configuration, the result
will be to run the object through the Python str function to generate a
string. Note that if a Unicode object is returned by the view callable, it
is not str() -ified.

Here’s an example of a view that returns a dictionary. If the string
renderer is specified in the configuration for this view, the view will
render the returned dictionary to the str() representation of the
dictionary:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(renderer='string')
def hello_world(request):
 return {'content':'Hello!'}

The body of the response returned by such a view will be a string
representing the str() serialization of the return value:

	1

	{'content': 'Hello!'}

Views which use the string renderer can vary non-body response attributes by
attaching properties to the request. See Varying Attributes of Rendered Responses.

json: JSON Renderer

The json renderer renders view callable results to JSON. It
passes the return value through the json.dumps standard library function,
and wraps the result in a response object. It also sets the response
content-type to application/json.

Here’s an example of a view that returns a dictionary. Since the json
renderer is specified in the configuration for this view, the view will
render the returned dictionary to a JSON serialization:

	1
2
3
4
5
6

	from pyramid.response import Response
from pyramid.view import view_config

@view_config(renderer='json')
def hello_world(request):
 return {'content':'Hello!'}

The body of the response returned by such a view will be a string
representing the JSON serialization of the return value:

	1

	'{"content": "Hello!"}'

The return value needn’t be a dictionary, but the return value must contain
values serializable by json.dumps().

You can configure a view to use the JSON renderer by naming json as the
renderer argument of a view configuration, e.g. by using
pyramid.config.Configurator.add_view():

	1
2
3
4

	config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='json')

Views which use the JSON renderer can vary non-body response attributes by
attaching properties to the request. See Varying Attributes of Rendered Responses.

*.pt or *.txt: Chameleon Template Renderers

Two built-in renderers exist for Chameleon templates.

If the renderer attribute of a view configuration is an absolute path, a
relative path or asset specification which has a final path element
with a filename extension of .pt, the Chameleon ZPT renderer is used.
See Chameleon ZPT Templates for more information about ZPT templates.

If the renderer attribute of a view configuration is an absolute path or
a asset specification which has a final path element with a filename
extension of .txt, the Chameleon text renderer is used. See
Chameleon ZPT Templates for more information about Chameleon text
templates.

The behavior of these renderers is the same, except for the engine
used to render the template.

When a renderer attribute that names a template path or asset
specification (e.g. myproject:templates/foo.pt or
myproject:templates/foo.txt) is used, the view must return a
Response object or a Python dictionary. If the view callable with
an associated template returns a Python dictionary, the named template will
be passed the dictionary as its keyword arguments, and the template renderer
implementation will return the resulting rendered template in a response to
the user. If the view callable returns anything but a Response object or a
dictionary, an error will be raised.

Before passing keywords to the template, the keyword arguments derived from
the dictionary returned by the view are augmented. The callable object –
whatever object was used to define the view – will be automatically
inserted into the set of keyword arguments passed to the template as the
view keyword. If the view callable was a class, the view keyword
will be an instance of that class. Also inserted into the keywords passed to
the template are renderer_name (the string used in the renderer
attribute of the directive), renderer_info (an object containing
renderer-related information), context (the context resource of the view
used to render the template), and request (the request passed to the view
used to render the template).

Here’s an example view configuration which uses a Chameleon ZPT renderer:

	1
2
3
4
5
6

	 # config is an instance of pyramid.config.Configurator

 config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='myproject:templates/foo.pt')

Here’s an example view configuration which uses a Chameleon text renderer:

	1
2
3
4

	 config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='myproject:templates/foo.txt')

Views which use a Chameleon renderer can vary response attributes by
attaching properties to the request. See Varying Attributes of Rendered Responses.

*.mak or *.mako: Mako Template Renderer

The Mako template renderer renders views using a Mako template. When
used, the view must return a Response object or a Python dictionary. The
dictionary items will then be used in the global template space. If the view
callable returns anything but a Response object, or a dictionary, an error
will be raised.

When using a renderer argument to a view configuration to specify
a Mako template, the value of the renderer may be a path relative to the
mako.directories setting (e.g. some/template.mak) or, alternately,
it may be a asset specification
(e.g. apackage:templates/sometemplate.mak). Mako templates may
internally inherit other Mako templates using a relative filename or a
asset specification as desired.

Here’s an example view configuration which uses a relative path:

	1
2
3
4
5
6

	 # config is an instance of pyramid.config.Configurator

 config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='foo.mak')

It’s important to note that in Mako’s case, the ‘relative’ path name
foo.mak above is not relative to the package, but is relative to the
directory (or directories) configured for Mako via the mako.directories
configuration file setting.

The renderer can also be provided in asset specification
format. Here’s an example view configuration which uses one:

	1
2
3
4

	 config.add_view('myproject.views.hello_world',
 name='hello',
 context='myproject.resources.Hello',
 renderer='mypackage:templates/foo.mak')

The above configuration will use the file named foo.mak in the
templates directory of the mypackage package.

The Mako template renderer can take additional arguments beyond the
standard reload_templates setting, see the Environment Variables and .ini File Settings for
additional Mako Template Render Settings.

Varying Attributes of Rendered Responses

Before a response constructed by a renderer is returned to
Pyramid, several attributes of the request are examined which have the
potential to influence response behavior.

View callables that don’t directly return a response should set these
attributes on the request object via setattr during their execution,
to influence associated response attributes.

	response_content_type

	Defines the content-type of the resulting response,
e.g. text/xml.

	response_headerlist

	A sequence of tuples describing cookie values that should be set in the
response, e.g. [('Set-Cookie', 'abc=123'), ('X-My-Header', 'foo')].

	response_status

	A WSGI-style status code (e.g. 200 OK) describing the status of the
response.

	response_charset

	The character set (e.g. UTF-8) of the response.

	response_cache_for

	A value in seconds which will influence Cache-Control and Expires
headers in the returned response. The same can also be achieved by
returning various values in the response_headerlist, this is purely a
convenience.

For example, if you need to change the response status from within a view
callable that uses a renderer, assign the response_status attribute to
the request before returning a result:

	1
2
3
4
5
6

	from pyramid.view import view_config

@view_config(name='gone', renderer='templates/gone.pt')
def myview(request):
 request.response_status = '404 Not Found'
 return {'URL':request.URL}

For more information on attributes of the request, see the API
documentation in pyramid.request.

Adding and Overriding Renderers

New templating systems and serializers can be associated with Pyramid
renderer names. To this end, configuration declarations can be made which
override an existing renderer factory, and which add a new renderer
factory.

Renderers can be registered imperatively using the
pyramid.config.Configurator.add_renderer() API.

Note

The tasks described in this section can also be performed via
declarative configuration. See
Adding and Overriding Renderers via ZCML.

For example, to add a renderer which renders views which have a
renderer attribute that is a path that ends in .jinja2:

	1

	config.add_renderer('.jinja2', 'mypackage.MyJinja2Renderer')

The first argument is the renderer name. The second argument is a reference
to an implementation of a renderer factory or a dotted Python
name referring to such an object.

Adding a New Renderer

You may add a new renderer by creating and registering a renderer
factory.

A renderer factory implementation is typically a class with the
following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class RendererFactory:
 def __init__(self, info):
 """ Constructor: ``info`` will be an object having the
 the following attributes: ``name`` (the renderer name), ``package``
 (the package that was 'current' at the time the renderer was
 registered), ``type`` (the renderer type name), ``registry``
 (the current application registry) and ``settings`` (the
 deployment settings dictionary).
 """

 def __call__(self, value, system):
 """ Call a the renderer implementation with the value and
 the system value passed in as arguments and return the
 result (a string or unicode object). The value is the
 return value of a view. The system value is a dictionary
 containing available system values (e.g. ``view``,
 ``context``, and ``request``). """

The formal interface definition of the info object passed to a renderer
factory constructor is available as pyramid.interfaces.IRendererInfo.

There are essentially two different kinds of renderer factories:

	A renderer factory which expects to accept a asset
specification, or an absolute path, as the name attribute of the
info object fed to its constructor. These renderer factories are
registered with a name value that begins with a dot (.). These
types of renderer factories usually relate to a file on the filesystem,
such as a template.

	A renderer factory which expects to accept a token that does not represent
a filesystem path or a asset specification in the name
attribute of the info object fed to its constructor. These renderer
factories are registered with a name value that does not begin with a
dot. These renderer factories are typically object serializers.

Asset Specifications

A asset specification is a colon-delimited identifier for a
asset. The colon separates a Python package
name from a package subpath. For example, the asset
specification my.package:static/baz.css identifies the file named
baz.css in the static subdirectory of the my.package Python
package.

Here’s an example of the registration of a simple renderer factory via
pyramid.config.Configurator.add_renderer():

	1
2
3

	# config is an instance of pyramid.config.Configurator

config.add_renderer(name='amf', factory='my.package.MyAMFRenderer')

Adding the above code to your application startup configuration will
allow you to use the my.package.MyAMFRenderer renderer factory
implementation in view configurations. Your application can use this
renderer by specifying amf in the renderer attribute of a
view configuration:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='amf')
def myview(request):
 return {'Hello':'world'}

At startup time, when a view configuration is encountered, which
has a name attribute that does not contain a dot, the full name
value is used to construct a renderer from the associated renderer
factory. In this case, the view configuration will create an instance
of an AMFRenderer for each view configuration which includes amf
as its renderer value. The name passed to the AMFRenderer
constructor will always be amf.

Here’s an example of the registration of a more complicated renderer
factory, which expects to be passed a filesystem path:

	1
2

	config.add_renderer(name='.jinja2',
 factory='my.package.MyJinja2Renderer')

Adding the above code to your application startup will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in view
configurations by referring to any renderer which ends in .jinja in
the renderer attribute of a view configuration:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/mytemplate.jinja2')
def myview(request):
 return {'Hello':'world'}

When a view configuration is encountered at startup time, which
has a name attribute that does contain a dot, the value of the name
attribute is split on its final dot. The second element of the split is
typically the filename extension. This extension is used to look up a
renderer factory for the configured view. Then the value of
renderer is passed to the factory to create a renderer for the view.
In this case, the view configuration will create an instance of a
Jinja2Renderer for each view configuration which includes anything
ending with .jinja2 in its renderer value. The name passed
to the Jinja2Renderer constructor will be the full value that was
set as renderer= in the view configuration.

See also renderer and
pyramid.config.Configurator.add_renderer().

Overriding an Existing Renderer

You can associate more than one filename extension with the same existing
renderer implementation as necessary if you need to use a different file
extension for the same kinds of templates. For example, to associate the
.zpt extension with the Chameleon ZPT renderer factory, use the
pyramid.config.Configurator.add_renderer() method:

	1

	config.add_renderer('.zpt', 'pyramid.chameleon_zpt.renderer_factory')

After you do this, Pyramid will treat templates ending in both the
.pt and .zpt filename extensions as Chameleon ZPT templates.

To override the default mapping in which files with a .pt extension are
rendered via a Chameleon ZPT page template renderer, use a variation on the
following in your application’s startup code:

	1

	config.add_renderer('.pt', 'mypackage.pt_renderer')

After you do this, the renderer factory in
mypackage.pt_renderer will be used to render templates which end
in .pt, replacing the default Chameleon ZPT renderer.

To associate a default renderer with all view configurations (even
ones which do not possess a renderer attribute), pass None as
the name attribute to the renderer tag:

	1

	config.add_renderer(None, 'mypackage.json_renderer_factory')

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Templates

A template is a file on disk which can be used to render
dynamic data provided by a view. Pyramid offers a
number of ways to perform templating tasks out of the box, and
provides add-on templating support through a set of bindings packages.

Out of the box, Pyramid provides templating via the Chameleon
and Mako templating libraries. Chameleon provides support for
two different types of templates: ZPT templates, and text templates.

Before discussing how built-in templates are used in
detail, we’ll discuss two ways to render templates within
Pyramid in general: directly, and via renderer
configuration.

Using Templates Directly

The most straightforward way to use a template within
Pyramid is to cause it to be rendered directly within a
view callable. You may use whatever API is supplied by a
given templating engine to do so.

Pyramid provides various APIs that allow you to render templates
directly from within a view callable. For example, if there is a
Chameleon ZPT template named foo.pt in a directory named
templates in your application, you can render the template from
within the body of a view callable like so:

	1
2
3
4
5
6

	from pyramid.renderers import render_to_response

def sample_view(request):
 return render_to_response('templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)

Warning

Earlier iterations of this documentation
(pre-version-1.3) encouraged the application developer to use
ZPT-specific APIs such as
pyramid.chameleon_zpt.render_template_to_response() and
pyramid.chameleon_zpt.render_template() to render templates
directly. This style of rendering still works, but at least for
purposes of this documentation, those functions are deprecated.
Application developers are encouraged instead to use the functions
available in the pyramid.renderers module to perform
rendering tasks. This set of functions works to render templates
for all renderer extensions registered with Pyramid.

The sample_view view callable function above returns a
response object which contains the body of the
templates/foo.pt template. In this case, the templates
directory should live in the same directory as the module containing
the sample_view function. The template author will have the names
foo and bar available as top-level names for replacement or
comparison purposes.

In the example above, the path templates/foo.pt is relative to the
directory containing the file which defines the view configuration.
In this case, this is the directory containing the file that
defines the sample_view function. Although a renderer path is
usually just a simple relative pathname, a path named as a renderer
can be absolute, starting with a slash on UNIX or a drive letter
prefix on Windows.

Warning

Only Chameleon templates support defining a renderer for a
template relative to the location of the module where the view
callable is defined. Mako templates, and other templating system
bindings work differently. In particular, Mako templates use a
“lookup path” as defined by the mako.directories configuration
file instead of treating relative paths as relative to the current
view module. See Templating With Mako Templates.

The path can alternately be a asset specification in the form
some.dotted.package_name:relative/path. This makes it possible to
address template assets which live in another package. For example:

	1
2
3
4
5
6

	from pyramid.renderers import render_to_response

def sample_view(request):
 return render_to_response('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)

An asset specification points at a file within a Python package.
In this case, it points at a file named foo.pt within the
templates directory of the mypackage package. Using a
asset specification instead of a relative template name is usually
a good idea, because calls to render_to_response using asset
specifications will continue to work properly if you move the code
containing them around.

Note

Mako templating system bindings also respect absolute asset
specifications as an argument to any of the render* commands. If a
template name defines a : (colon) character and is not an absolute
path, it is treated as an absolute asset specification.

In the examples above we pass in a keyword argument named request
representing the current Pyramid request. Passing a request
keyword argument will cause the render_to_response function to
supply the renderer with more correct system values (see
System Values Used During Rendering), because most of the information required
to compose proper system values is present in the request. If your
template relies on the name request or context, or if you’ve
configured special renderer globals, make sure to pass
request as a keyword argument in every call to to a
pyramid.renderers.render_* function.

Every view must return a response object, except for views
which use a renderer named via view configuration (which we’ll
see shortly). The pyramid.renderers.render_to_response()
function is a shortcut function that actually returns a response
object. This allows the example view above to simply return the result
of its call to render_to_response() directly.

Obviously not all APIs you might call to get response data will return a
response object. For example, you might render one or more templates to
a string that you want to use as response data. The
pyramid.renderers.render() API renders a template to a string. We
can manufacture a response object directly, and use that string
as the body of the response:

	1
2
3
4
5
6
7
8
9

	from pyramid.renderers import render
from pyramid.response import Response

def sample_view(request):
 result = render('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response = Response(result)
 return response

Because view callable functions are typically the only code in
Pyramid that need to know anything about templates, and because view
functions are very simple Python, you can use whatever templating system you’re
most comfortable with within Pyramid. Install the templating system,
import its API functions into your views module, use those APIs to generate a
string, then return that string as the body of a Pyramid
Response object.

For example, here’s an example of using “raw” Mako [http://www.makotemplates.org/] from within a Pyramid view:

	1
2
3
4
5
6
7
8

	from mako.template import Template
from pyramid.response import Response

def make_view(request):
 template = Template(filename='/templates/template.mak')
 result = template.render(name=request.params['name'])
 response = Response(result)
 return response

You probably wouldn’t use this particular snippet in a project, because it’s
easier to use the Mako renderer bindings which already exist in
Pyramid. But if your favorite templating system is not supported as a
renderer extension for Pyramid, you can create your own simple
combination as shown above.

Note

If you use third-party templating languages without cooperating
Pyramid bindings directly within view callables, the
auto-template-reload strategy explained in
Automatically Reloading Templates will not be available, nor will the
template asset overriding capability explained in
Overriding Assets be available, nor will it be
possible to use any template using that language as a
renderer. However, it’s reasonably easy to write custom
templating system binding packages for use under Pyramid so
that templates written in the language can be used as renderers.
See Adding and Overriding Renderers for instructions on how
to create your own template renderer and
Available Add-On Template System Bindings for example packages.

If you need more control over the status code and content-type, or
other response attributes from views that use direct templating, you
may set attributes on the response that influence these values.

Here’s an example of changing the content-type and status of the
response object returned by
pyramid.renderers.render_to_response():

	1
2
3
4
5
6
7
8
9

	from pyramid.renderers import render_to_response

def sample_view(request):
 response = render_to_response('templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response.content_type = 'text/plain'
 response.status_int = 204
 return response

Here’s an example of manufacturing a response object using the result
of pyramid.renderers.render() (a string):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.renderers import render
from pyramid.response import Response

def sample_view(request):
 result = render('mypackage:templates/foo.pt',
 {'foo':1, 'bar':2},
 request=request)
 response = Response(result)
 response.content_type = 'text/plain'
 return response

System Values Used During Rendering

When a template is rendered using
pyramid.renderers.render_to_response() or
pyramid.renderers.render(), the renderer representing the
template will be provided with a number of system values. These
values are provided in a dictionary to the renderer and include:

	context

	The current Pyramid context if request was provided as
a keyword argument, or None.

	request

	The request provided as a keyword argument.

	renderer_name

	The renderer name used to perform the rendering,
e.g. mypackage:templates/foo.pt.

	renderer_info

	An object implementing the pyramid.interfaces.IRendererInfo
interface. Basically, an object with the following attributes:
name, package and type.

You can define more values which will be passed to every template
executed as a result of rendering by defining renderer
globals.

What any particular renderer does with these system values is up to the
renderer itself, but most template renderers, including Chameleon and
Mako renderers, make these names available as top-level template
variables.

Templates Used as Renderers via Configuration

An alternative to using pyramid.renderers.render_to_response()
to render templates manually in your view callable code, is
to specify the template as a renderer in your
view configuration. This can be done with any of the
templating languages supported by Pyramid.

To use a renderer via view configuration, specify a template
asset specification as the renderer argument, or
attribute to the view configuration of a view
callable. Then return a dictionary from that view callable. The
dictionary items returned by the view callable will be made available
to the renderer template as top-level names.

The association of a template as a renderer for a view
configuration makes it possible to replace code within a view
callable that handles the rendering of a template.

Here’s an example of using a pyramid.view.view_config
decorator to specify a view configuration that names a
template renderer:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/foo.pt')
def my_view(request):
 return {'foo':1, 'bar':2}

Note

You do not need to supply the request value as a key
in the dictionary result returned from a renderer-configured view
callable. Pyramid automatically supplies this value for
you so that the “most correct” system values are provided to
the renderer.

Warning

The renderer argument to the @view_config configuration decorator
shown above is the template path. In the example above, the path
templates/foo.pt is relative. Relative to what, you ask? Because
we’re using a Chameleon renderer, it means “relative to the directory in
which the file which defines the view configuration lives”. In this case,
this is the directory containing the file that defines the my_view
function. View-configuration-relative asset specifications work only
in Chameleon, not in Mako templates.

Similar renderer configuration can be done imperatively and via
ZCML. See Writing View Callables Which Use a Renderer. See also
Built-In Renderers.

Although a renderer path is usually just a simple relative pathname, a path
named as a renderer can be absolute, starting with a slash on UNIX or a drive
letter prefix on Windows. The path can alternately be an asset
specification in the form some.dotted.package_name:relative/path, making
it possible to address template assets which live in another package.

Not just any template from any arbitrary templating system may be used as a
renderer. Bindings must exist specifically for Pyramid to use a
templating language template as a renderer. Currently, Pyramid has
built-in support for two Chameleon templating languages: ZPT and text, and
the Mako templating system. See Built-In Renderers for a discussion
of their details. Pyramid also supports the use of Jinja2
templates as renderers. See Available Add-On Template System Bindings.

Why Use A Renderer via View Configuration

Using a renderer in view configuration is usually a better way to
render templates than using any rendering API directly from within a
view callable because it makes the view callable more
unit-testable. Views which use templating or rendering APIs directly
must return a Response object. Making testing assertions
about response objects is typically an indirect process, because it
means that your test code often needs to somehow parse information
out of the response body (often HTML). View callables configured
with renderers externally via view configuration typically return a
dictionary, as above. Making assertions about results returned in a
dictionary is almost always more direct and straightforward than
needing to parse HTML. Specifying a renderer from within
ZCML (as opposed to imperatively or via a view_config
decorator, or using a template directly from within a view callable)
also makes it possible for someone to modify the template used to
render a view without needing to fork your code to do so. See
Extending An Existing Pyramid Application for more information.

By default, views rendered via a template renderer return a
Response object which has a status code of 200 OK, and a
content-type of text/html. To vary attributes of the response
of a view that uses a renderer, such as the content-type, headers, or
status attributes, you must set attributes on the request object
within the view before returning the dictionary. See
Varying Attributes of Rendered Responses for more information.

The same set of system values are provided to templates rendered via a
renderer view configuration as those provided to templates rendered
imperatively. See System Values Used During Rendering.

Chameleon ZPT Templates

Like Zope, Pyramid uses ZPT (Zope Page
Templates) as its default templating language. However,
Pyramid uses a different implementation of the ZPT
specification than Zope does: the Chameleon templating
engine. The Chameleon engine complies largely with the Zope Page
Template [http://wiki.zope.org/ZPT/FrontPage] template
specification. However, it is significantly faster.

The language definition documentation for Chameleon ZPT-style
templates is available from the Chameleon website [http://chameleon.repoze.org/].

Warning

Chameleon only works on CPython platforms and
Google App Engine. On Jython and other non-CPython
platforms, you should use Mako (see Templating With Mako Templates) or
pyramid_jinja2 instead. See
Available Add-On Template System Bindings.

Given a Chameleon ZPT template named foo.pt in a directory
in your application named templates, you can render the template as
a renderer like so:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/foo.pt')
def my_view(request):
 return {'foo':1, 'bar':2}

See also Built-In Renderers for more general information about
renderers, including Chameleon ZPT renderers.

A Sample ZPT Template

Here’s what a simple Chameleon ZPT template used under
Pyramid might look like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>${project} Application</title>
 </head>
 <body>
 <h1 class="title">Welcome to <code>${project}</code>, an
 application generated by the pyramid web
 application framework.</h1>
 </body>
 </html>

Note the use of Genshi -style ${replacements} above. This
is one of the ways that Chameleon ZPT differs from standard
ZPT. The above template expects to find a project key in the set
of keywords passed in to it via pyramid.renderers.render() or
pyramid.renderers.render_to_response(). Typical ZPT
attribute-based syntax (e.g. tal:content and tal:replace) also
works in these templates.

Using ZPT Macros in Pyramid

When a renderer is used to render a template, Pyramid makes at
least two top-level names available to the template by default: context
and request. One of the common needs in ZPT-based templates is to use
one template’s “macros” from within a different template. In Zope, this is
typically handled by retrieving the template from the context. But the
context in Pyramid is a resource object, and templates cannot
usually be retrieved from resources. To use macros in Pyramid, you
need to make the macro template itself available to the rendered template by
passing the macro template, or even the macro itself, into the rendered
template. To do this you can use the pyramid.renderers.get_renderer()
API to retrieve the macro template, and pass it into the template being
rendered via the dictionary returned by the view. For example, using a
view configuration via a pyramid.view.view_config decorator
that uses a renderer:

	1
2
3
4
5
6
7

	from pyramid.renderers import get_renderer
from pyramid.view import view_config

@view_config(renderer='templates/mytemplate.pt')
def my_view(request):
 main = get_renderer('templates/master.pt').implementation()
 return {'main':main}

Where templates/master.pt might look like so:

	1
2
3
4
5
6
7
8
9

	 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">

 <h1>
 Hello Fred!
 </h1>

 </html>

And templates/mytemplate.pt might look like so:

	1
2
3
4
5
6
7

	 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">

 Chris

 </html>

Templating with Chameleon Text Templates

Pyramid also allows for the use of templates which are
composed entirely of non-XML text via Chameleon. To do so,
you can create templates that are entirely composed of text except for
${name} -style substitution points.

Here’s an example usage of a Chameleon text template. Create a file
on disk named mytemplate.txt in your project’s templates
directory with the following contents:

Hello, ${name}!

Then in your project’s views.py module, you can create a view
which renders this template:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='templates/mytemplate.txt')
def my_view(request):
 return {'name':'world'}

When the template is rendered, it will show:

Hello, world!

If you’d rather use templates directly within a view callable (without
the indirection of using a renderer), see pyramid.chameleon_text
for the API description.

See also Built-In Renderers for more general information about
renderers, including Chameleon text renderers.

Side Effects of Rendering a Chameleon Template

When a Chameleon template is rendered from a file, the templating
engine writes a file in the same directory as the template file itself
as a kind of cache, in order to do less work the next time the
template needs to be read from disk. If you see “strange” .py
files showing up in your templates directory (or otherwise
directly “next” to your templates), it is due to this feature.

If you’re using a version control system such as Subversion, you
should configure it to ignore these files. Here’s the contents of the
author’s svn propedit svn:ignore . in each of my templates
directories.

*.pt.py
*.txt.py

Note that I always name my Chameleon ZPT template files with a .pt
extension and my Chameleon text template files with a .txt
extension so that these svn:ignore patterns work.

Nicer Exceptions in Chameleon Templates

The exceptions raised by Chameleon templates when a rendering fails
are sometimes less than helpful. Pyramid allows you to
configure your application development environment so that exceptions
generated by Chameleon during template compilation and execution will
contain nicer debugging information.

Warning

template-debugging behavior is not recommended for
production sites as it slows renderings; it’s usually
only desirable during development.

In order to turn on template exception debugging, you can use an
environment variable setting or a configuration file setting.

To use an environment variable, start your application under a shell
using the PYRAMID_DEBUG_TEMPLATES operating system environment
variable set to 1, For example:

$ PYRAMID_DEBUG_TEMPLATES=1 bin/paster serve myproject.ini

To use a setting in the application .ini file for the same
purpose, set the debug_templates key to true within the
application’s configuration section, e.g.:

	1
2
3

	[app:main]
use = egg:MyProject#app
debug_templates = true

With template debugging off, a NameError exception resulting
from rendering a template with an undefined variable
(e.g. ${wrong}) might end like this:

File "...", in __getitem__
 raise NameError(key)
NameError: wrong

Note that the exception has no information about which template was
being rendered when the error occured. But with template debugging
on, an exception resulting from the same problem might end like so:

RuntimeError: Caught exception rendering template.
 - Expression: ``wrong``
 - Filename: /home/fred/env/proj/proj/templates/mytemplate.pt
 - Arguments: renderer_name: proj:templates/mytemplate.pt
 template: <PageTemplateFile - at 0x1d2ecf0>
 xincludes: <XIncludes - at 0x1d3a130>
 request: <Request - at 0x1d2ecd0>
 project: proj
 macros: <Macros - at 0x1d3aed0>
 context: <MyResource None at 0x1d39130>
 view: <function my_view at 0x1d23570>

NameError: wrong

The latter tells you which template the error occurred in, as well as
displaying the arguments passed to the template itself.

Note

Turning on debug_templates has the same effect as using the
Chameleon environment variable CHAMELEON_DEBUG. See Chameleon
Environment Variables [http://chameleon.repoze.org/docs/latest/config.html#environment-variables]
for more information.

Chameleon Template Internationalization

See Chameleon Template Support for Translation Strings for information about
supporting internationalized units of text within Chameleon
templates.

Templating With Mako Templates

Mako is a templating system written by Mike Bayer. Pyramid
has built-in bindings for the Mako templating system. The language
definition documentation for Mako templates is available from the Mako
website [http://www.makotemplates.org/].

To use a Mako template, given a Mako ZPT template file named
foo.mak in the templates subdirectory in your application
package named mypackage, you can configure the template as a
renderer like so:

	1
2
3
4
5

	from pyramid.view import view_config

@view_config(renderer='foo.mak')
def my_view(request):
 return {'project':'my project'}

For the above view callable to work, the following setting needs to be
present in the application stanza of your configuration’s ini file:

mako.directories = mypackage:templates

This lets the Mako templating system know that it should look for templates
in the templates subdirectory of the mypackage Python package. See
Mako Template Render Settings for more information about the
mako.directories setting and other Mako-related settings that can be
placed into the application’s ini file.

A Sample Mako Template

Here’s what a simple Mako template used under Pyramid might
look like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:tal="http://xml.zope.org/namespaces/tal">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>${project} Application</title>
 </head>
 <body>
 <h1 class="title">Welcome to <code>${project}</code>, an
 application generated by the pyramid web
 application framework.</h1>
 </body>
 </html>

This template doesn’t use any advanced features of Mako, only the
${squiggly} replacement syntax for names that are passed in as
renderer globals. See the the Mako documentation [http://www.makotemplates.org/] to use more advanced features.

Automatically Reloading Templates

It’s often convenient to see changes you make to a template file
appear immediately without needing to restart the application process.
Pyramid allows you to configure your application development
environment so that a change to a template will be automatically
detected, and the template will be reloaded on the next rendering.

Warning

auto-template-reload behavior is not recommended for
production sites as it slows rendering slightly; it’s
usually only desirable during development.

In order to turn on automatic reloading of templates, you can use an
environment variable, or a configuration file setting.

To use an environment variable, start your application under a shell
using the PYRAMID_RELOAD_TEMPLATES operating system environment
variable set to 1, For example:

$ PYRAMID_RELOAD_TEMPLATES=1 bin/paster serve myproject.ini

To use a setting in the application .ini file for the same
purpose, set the reload_templates key to true within the
application’s configuration section, e.g.:

	1
2
3

	[app:main]
use = egg:MyProject#app
reload_templates = true

Available Add-On Template System Bindings

Jinja2 template bindings are available for Pyramid in the
pyramid_jinja2 package. You can get the latest release of
this package from the
Python package index [http://pypi.python.org/pypi/pyramid_jinja2]
(pypi).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Resources

A resource is an object that represents a “place” in your
application. Every Pyramid application has at least one resource
object: the root resource. The root resource is the root of a
resource tree. A resource tree is a set of nested dictionary-like
objects which you may use to represent your website’s structure.

In an application which uses traversal to map URLs to code, the
resource tree structure is used heavily to map a URL to a view
callable. Pyramid will walk “up” the resource tree when
traversal is used in order to find a context. Once a context
is found, the resource represented by the context combined with data in the
request will be used to find a view callable.

In an application which uses URL dispatch, the resource tree is only
used indirectly, and is often “invisible” to the developer. In URL dispatch
applications, the resource “tree” is often composed of only the root resource
by itself. This root resource sometimes has security declarations attached
to it, but is not required to have any. In general, the resource tree is
much less important in applications that use URL dispatch than applications
that use traversal.

In “Zope-like” Pyramid applications, resource objects also often store
data persistently and offer methods related to mutating that persistent data.
In these kinds of applications, resources not only represent the site
structure of your website, but they become the domain model of the
application.

Also:

	The context and containment predicate arguments to
pyramid.config.Configurator.add_view() (or a
pyramid.view.view_config() decorator) and reference a resource class
or resource interface.

	A root factory returns a resource.

	A resource is exposed to view code as the context of a
view.

Defining a Resource Constructor

An example of a resource constructor, BlogEntry is presented below. It
is implemented as a class which, when instantiated, becomes a resource
instance.

	1
2
3
4
5
6
7
8

	import datetime

class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

A resource constructor may be any Python object which is callable, and which
returns a resource instance. In the above example, the BlogEntry class
can be “called”, returning a resource instance.

Resources Which Implement Interfaces

Resources can optionally be made to implement an interface. An
interface is used to tag a resource object with a “type” that can later be
referred to within view configuration.

Specifying an interface instead of a class as the context or
containment predicate arguments within view configuration
statements effectively makes it possible to use a single view callable for
more than one class of resource object. If your application is simple enough
that you see no reason to want to do this, you can skip reading this section
of the chapter.

For example, here’s some code which describes a blog entry which also
declares that the blog entry implements an interface.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import datetime
from zope.interface import implements
from zope.interface import Interface

class IBlogEntry(Interface):
 pass

class BlogEntry(object):
 implements(IBlogEntry)
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

This resource consists of two things: the class which defines the resource
constructor as the class BlogEntry, and an interface attached to
the class via an implements statement at class scope using the
IBlogEntry interface as its sole argument.

The interface object used must be an instance of a class that inherits from
zope.interface.Interface.

A resource class may implement zero or more interfaces. You specify that a
resource implements an interface by using the
zope.interface.implements() function at class scope. The above
BlogEntry resource implements the IBlogEntry interface.

You can also specify that a particular resource instance provides an
interface, as opposed to its class. When you declare that a class implements
an interface, all instances of that class will also provide that interface.
However, you can also just say that a single object provides the interface.
To do so, use the zope.interface.directlyProvides() function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from zope.interface import directlyProvides
from zope.interface import Interface

class IBlogEntry(Interface):
 pass

class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

entry = BlogEntry('title', 'body', 'author')
directlyProvides(entry, IBlogEntry)

zope.interface.directlyProvides() will replace any existing interface
that was previously provided by an instance. If a resource object already
has instance-level interface declarations that you don’t want to replace, use
the zope.interface.alsoProvides() function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from zope.interface import alsoProvides
from zope.interface import directlyProvides
from zope.interface import Interface

class IBlogEntry1(Interface):
 pass

class IBlogEntry2(Interface):
 pass

class BlogEntry(object):
 def __init__(self, title, body, author):
 self.title = title
 self.body = body
 self.author = author
 self.created = datetime.datetime.now()

entry = BlogEntry('title', 'body', 'author')
directlyProvides(entry, IBlogEntry1)
alsoProvides(entry, IBlogEntry2)

zope.interface.alsoProvides() will augment the set of interfaces
directly provided by an instance instead of overwriting them like
zope.interface.directlyProvides() does.

For more information about how resource interfaces can be used by view
configuration, see Using Resource Interfaces In View Configuration.

Defining a Resource Tree

When traversal is used (as opposed to a purely url dispatch
based application), Pyramid expects to be able to traverse a tree
composed of resources (the resource tree). Traversal begins at a
root resource, and descends into the tree recursively via each resource’s
__getitem__ method. Pyramid imposes the following policy on
resource instances in the tree:

	A container resource (a resource which contains other resources) must
supply a __getitem__ method which is willing to resolve a unicode name
to a sub-resource. If a sub-resource by a particular name does not exist
in a container resource, __getitem__ method of the container resource
must raise a KeyError. If a sub-resource by that name does exist,
the container’s __getitem__ should return the sub-resource.

	Leaf resources, which do not contain other resources, must not implement a
__getitem__, or if they do, their __getitem__ method must raise a
KeyError.

See Traversal for more information about how traversal
works against resource instances.

Location-Aware Resources

Applications which use traversal to locate the context
resource of a view must ensure that the resources that make up the
resource tree are “location aware”.

In order for Pyramid location, security, URL-generation, and traversal
functions (i.e., functions in pyramid.location,
pyramid.traversal, pyramid.url and some in pyramid.security
) to work properly against the resources in a resource tree, all resources in
the tree must be location -aware. This means they must have two
attributes: __parent__ and __name__.

The __parent__ attribute should be a reference to the resource’s parent
resource instance in the tree. The __name__ attribute should be the name
with which a resource’s parent refers to the resource via __getitem__.

The __parent__ of the root resource should be None and its
__name__ should be the empty string. For instance:

	1
2
3

	class MyRootResource(object):
 __name__ = ''
 __parent__ = None

A resource returned from the root resource’s __getitem__ method should
have a __parent__ attribute that is a reference to the root resource, and
its __name__ attribute should match the name by which it is reachable via
the root resource’s __getitem__. A container resource within the root
resource should have a __getitem__ that returns resources with a
__parent__ attribute that points at the container, and these subobjects
should have a __name__ attribute that matches the name by which they are
retrieved from the container via __getitem__. This pattern continues
recursively “up” the tree from the root.

The __parent__ attributes of each resource form a linked list that points
“upward” toward the root. This is analogous to the .. entry in filesystem
directories. If you follow the __parent__ values from any resource in the
resource tree, you will eventually come to the root resource, just like if
you keep executing the cd .. filesystem command, eventually you will
reach the filesystem root directory.

Warning

If your root resource has a __name__ argument
that is not None or the empty string, URLs returned by the
pyramid.url.resource_url() function and paths generated by
the pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple() APIs will be
generated improperly. The value of __name__ will be prepended
to every path and URL generated (as opposed to a single leading
slash or empty tuple element).

Using pyramid_traversalwrapper

If you’d rather not manage the __name__ and __parent__ attributes
of your resources “by hand”, an add-on package named
pyramid_traversalwrapper can help.

In order to use this helper feature, you must first install the
pyramid_traversalwrapper package (available via PyPI), then register
its ModelGraphTraverser as the traversal policy, rather than the
default Pyramid traverser. The package contains instructions for
doing so.

Once Pyramid is configured with this feature, you will no longer
need to manage the __parent__ and __name__ attributes on resource
objects “by hand”. Instead, as necessary, during traversal Pyramid
will wrap each resource (even the root resource) in a LocationProxy
which will dynamically assign a __name__ and a __parent__ to the
traversed resrouce (based on the last traversed resource and the name
supplied to __getitem__). The root resource will have a __name__
attribute of None and a __parent__ attribute of None.

Pyramid API Functions That Act Against Resources

A resource object is used as the context provided to a view. See
Traversal and URL Dispatch for more information
about how a resource object becomes the context.

The APIs provided by pyramid.traversal are used against resource
objects. These functions can be used to find the “path” of a resource, the
root resource in a resource tree, or to generate a URL for a resource.

The APIs provided by pyramid.location are used against resources.
These can be used to walk down a resource tree, or conveniently locate one
resource “inside” another.

Some APIs in pyramid.security accept a resource object as a parameter.
For example, the pyramid.security.has_permission() API accepts a
resource object as one of its arguments; the ACL is obtained from this
resource or one of its ancestors. Other APIs in the pyramid.security
module also accept context as an argument, and a context is always a
resource.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Static Assets

Pyramid makes it possible to serve up static asset files from a
directory on a filesystem. This chapter describes how to configure
Pyramid to do so.

Serving Static Assets

Use the pyramid.config.Configurator.add_static_view() to instruct
Pyramid to serve static assets such as JavaScript and CSS files. This
mechanism makes static files available at a name relative to the application
root URL, e.g. /static.

Note that the path provided to
pyramid.config.Configurator.add_static_view() may be a fully qualified
asset specification, or an absolute path.

Here’s an example of a use of
pyramid.config.Configurator.add_static_view() that will serve
files up under the /static URL from the /var/www/static directory of
the computer which runs the Pyramid application using an absolute
path.

	1
2

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='static', path='/var/www/static')

Here’s an example of pyramid.config.Configurator.add_static_view() that
will serve files up under the /static URL from the a/b/c/static
directory of the Python package named some_package using a fully
qualified asset specification.

	1
2

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='static', path='some_package:a/b/c/static')

Whether you use for path a fully qualified asset specification, or an
absolute path, when you place your static files on the filesystem in the
directory represented as the path of the directive, you will then be able
to view the static files in this directory via a browser at URLs prefixed
with the directive’s name. For instance if the static directive’s
name is static and the static directive’s path is
/path/to/static, http://localhost:6543/static/foo.js will return the
file /path/to/static/dir/foo.js. The static directory may contain
subdirectories recursively, and any subdirectories may hold files; these will
be resolved by the static view as you would expect.

While the path argument can be a number of different things, the name
argument of the call to pyramid.config.Configurator.add_static_view()
can also be one of a number of things: a view name or a URL. The above
examples have shown usage of the name argument as a view name. When
name is a URL (or any string with a slash (/) in it), static assets
can be served from an external webserver. In this mode, the name is used
as the URL prefix when generating a URL using pyramid.url.static_url().

Note

Using pyramid.url.static_url() in conjunction with a
pyramid.config.Configurator.add_static_view() makes it
possible to put static media on a separate webserver during production (if
the name argument to
pyramid.config.Configurator.add_static_view() is a URL),
while keeping static media package-internal and served by the development
webserver during development (if the name argument to
pyramid.config.Configurator.add_static_view() is a view
name). To create such a circumstance, we suggest using the
pyramid.registry.Registry.settings API in conjunction with a
setting in the application .ini file named media_location. Then
set the value of media_location to either a view name or a URL
depending on whether the application is being run in development or in
production (use a different .ini` file for production than you do for
development). This is just a suggestion for a pattern; any setting name
other than media_location could be used.

For example, pyramid.config.Configurator.add_static_view() may
be fed a name argument which is http://example.com/images:

	1
2
3

	# config is an instance of pyramid.config.Configurator
config.add_static_view(name='http://example.com/images',
 path='mypackage:images')

Because pyramid.config.Configurator.add_static_view() is
provided with a name argument that is the URL prefix
http://example.com/images, subsequent calls to
pyramid.url.static_url() with paths that start with the path
argument passed to pyramid.config.Configurator.add_static_view()
will generate a URL something like http://example.com/images/logo.png. The
external webserver listening on example.com must be itself configured to
respond properly to such a request. The pyramid.url.static_url() API
is discussed in more detail later in this chapter.

The static ZCML directive offers an declarative equivalent
to pyramid.config.Configurator.add_static_view(). Use of the
static ZCML directive is completely equivalent to using
imperative configuration for the same purpose.

Note

Using pyramid.url.static_url() in conjunction with a
pyramid.configuration.Configurator.add_static_view() makes it
possible to put static media on a separate webserver during production (if
the name argument to
pyramid.configuration.Configurator.add_static_view() is a URL),
while keeping static media package-internal and served by the development
webserver during development (if the name argument to
pyramid.configuration.Configurator.add_static_view() is a view
name). To create such a circumstance, we suggest using the
pyramid.registry.Registry.settings API in conjunction with a
setting in the application .ini file named media_location. Then
set the value of media_location to either a view name or a URL
depending on whether the application is being run in development or in
production (use a different .ini` file for production than you do for
development). This is just a suggestion for a pattern; any setting name
other than media_location could be used.

Generating Static Asset URLs

When a pyramid.config.Configurator.add_static_view() method is used to
register a static asset directory, a special helper API named
pyramid.url.static_url() can be used to generate the appropriate URL
for an asset that lives in one of the directories named by the static
registration path attribute.

For example, let’s assume you create a set of static declarations like so:

	1
2

	config.add_static_view(name='static1', path='mypackage:assets/1')
config.add_static_view(name='static2', path='mypackage:assets/2')

These declarations create URL-accessible directories which have URLs that
begin with /static1 and /static2, respectively. The assets in the
assets/1 directory of the mypackage package are consulted when a user
visits a URL which begins with /static1, and the assets in the
assets/2 directory of the mypackage package are consulted when a user
visits a URL which begins with /static2.

You needn’t generate the URLs to static assets “by hand” in such a
configuration. Instead, use the pyramid.url.static_url() API to
generate them for you. For example:

	1
2
3
4
5
6
7
8
9

	from pyramid.url import static_url
from pyramid.chameleon_zpt import render_template_to_response

def my_view(request):
 css_url = static_url('mypackage:assets/1/foo.css', request)
 js_url = static_url('mypackage:assets/2/foo.js', request)
 return render_template_to_response('templates/my_template.pt',
 css_url = css_url,
 js_url = js_url)

If the request “application URL” of the running system is
http://example.com, the css_url generated above would be:
http://example.com/static1/foo.css. The js_url generated
above would be http://example.com/static2/foo.js.

One benefit of using the pyramid.url.static_url() function rather than
constructing static URLs “by hand” is that if you need to change the name
of a static URL declaration, the generated URLs will continue to resolve
properly after the rename.

URLs may also be generated by pyramid.url.static_url() to static assets
that live outside the Pyramid application. This will happen when
the pyramid.config.Configurator.add_static_view() API associated with
the path fed to pyramid.url.static_url() is a URL instead of a view
name. For example, the name argument may be http://example.com while
the the path given may be mypackage:images:

	1

	config.add_static_view(name='http://example.com/images', path='mypackage:images')

Under such a configuration, the URL generated by static_url for
assets which begin with mypackage:images will be prefixed with
http://example.com/images:

	1
2

	static_url('mypackage:images/logo.png', request)
-> http://example.com/images/logo.png

Advanced: Serving Static Assets Using a View Callable

For more flexibility, static assets can be served by a view callable
which you register manually. For example, you may want static assets to only
be available when the context is of a particular type, or when
certain request headers are present.

The pyramid.view.static helper class is used to perform this
task. This class creates an object that is capable acting as a Pyramid
view callable which serves static assets from a directory. For instance, to
serve files within a directory located on your filesystem at
/path/to/static/dir from the URL path /static in your application,
create an instance of the pyramid.view.static class inside a
static.py file in your application root as below.

	1
2

	from pyramid.view import static
static_view = static('/path/to/static/dir')

Note

the argument to pyramid.view.static can also be
a “here-relative” pathname, e.g. my/static (meaning relative to the
Python package of the module in which the view is being defined).
It can also be a asset specification
(e.g. anotherpackage:some/subdirectory).

Subsequently, you may wire this view up to be accessible as /static using
the pyramid.config.Configurator.add_view method in your application’s
startup code against either the class or interface that represents your root
resource object.

	1
2

	config.add_view('mypackage.static.static_view', name='static',
 context='mypackage.resources.Root')

In this case, mypackage.resources.Root refers to the class of your
Pyramid application’s resource tree.

The context argument above limits where the static view is accessible to URL
paths directly under the root object. If you omit the context argument,
then static will be accessible as the static view against any resource
object in the resource tree. This will allow /static/foo.js to work, but
it will also allow for /anything/static/foo.js too, as long as
anything can be resolved.

Note that you cannot use the pyramid.url.static_url() API to generate
URLs against assets made accessible by registering a custom static view.

Warning

When adding a static view to your root object, you need to be careful that
there are no resource objects contained in the root with the same key as
the view name (e.g., static). Resource objects take precedence during
traversal, thus such a name collision will cause the resource to “shadow”
your static view. To avoid this issue, and ensure that your root
resource’s __getitem__ is never called when a static asset is
requested, you can refer to them unambiguously using the @@ prefix
(goggles) in their URLs. For the above examples you could use
‘/@@static/foo.js’ instead of ‘/static/foo.js’ to avoid such shadowing.
See Traversal for information about “goggles” (@@).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Request and Response Objects

Note

This chapter is adapted from a portion of the WebOb
documentation, originally written by Ian Bicking.

Pyramid uses the WebOb package to supply
request and response object implementations. The
request object that is passed to a Pyramid
view is an instance of the pyramid.request.Request
class, which is a subclass of webob.Request. The
response returned from a Pyramid view
renderer is an instance of the webob.Response class.
Users can also return an instance of webob.Response directly
from a view as necessary.

WebOb is a project separate from Pyramid with a separate set
of authors and a fully separate set of documentation [http://pythonpaste.org/webob/].

WebOb provides objects for HTTP requests and responses. Specifically
it does this by wrapping the WSGI [http://wsgi.org] request
environment and response status/headers/app_iter (body).

WebOb request and response objects provide many conveniences for
parsing WSGI requests and forming WSGI responses. WebOb is a nice way
to represent “raw” WSGI requests and responses; however, we won’t
cover that use case in this document, as users of Pyramid
don’t typically need to use the WSGI-related features of WebOb
directly. The reference documentation [http://pythonpaste.org/webob/reference.html] shows many examples of
creating requests and using response objects in this manner, however.

Request

The request object is a wrapper around the WSGI environ dictionary [http://www.python.org/dev/peps/pep-0333/#environ-variables]. This
dictionary contains keys for each header, keys that describe the
request (including the path and query string), a file-like object for
the request body, and a variety of custom keys. You can always access
the environ with req.environ.

Some of the most important/interesting attributes of a request
object:

	req.method:

	The request method, e.g., 'GET', 'POST'

	req.GET:

	A multidict with all the variables in the query
string.

	req.POST:

	A multidict with all the variables in the request
body. This only has variables if the request was a POST and
it is a form submission.

	req.params:

	A multidict with a combination of everything in
req.GET and req.POST.

	req.body:

	The contents of the body of the request. This contains the entire
request body as a string. This is useful when the request is a
POST that is not a form submission, or a request like a
PUT. You can also get req.body_file for a file-like
object.

	req.cookies:

	A simple dictionary of all the cookies.

	req.headers:

	A dictionary of all the headers. This dictionary is case-insensitive.

	req.urlvars and req.urlargs:

	req.urlvars are the keyword parameters associated with the
request URL. req.urlargs are the positional parameters.
These are set by products like Routes [http://routes.groovie.org/] and Selector [http://lukearno.com/projects/selector/].

Also, for standard HTTP request headers there are usually attributes,
for instance: req.accept_language, req.content_length,
req.user_agent, as an example. These properties expose the
parsed form of each header, for whatever parsing makes sense. For
instance, req.if_modified_since returns a datetime [http://python.org/doc/current/lib/datetime-datetime.html] object
(or None if the header is was not provided).

Note

Full API documentation for the Pyramid request
object is available in pyramid.request.

Special Attributes Added to the Request by Pyramid

In addition to the standard WebOb attributes, Pyramid
adds special attributes to every request: context, registry,
root, subpath, traversed, view_name, virtual_root,
virtual_root_path, session, and tmpl_context. These
attributes are documented further within the
pyramid.request.Request API documentation.

URLs

In addition to these attributes, there are several ways to get the URL
of the request. I’ll show various values for an example URL
http://localhost/app/blog?id=10, where the application is mounted at
http://localhost/app.

	req.url:

	The full request URL, with query string, e.g.,
http://localhost/app/blog?id=10

	req.host:

	The host information in the URL, e.g.,
localhost

	req.host_url:

	The URL with the host, e.g., http://localhost

	req.application_url:

	The URL of the application (just the SCRIPT_NAME portion of the
path, not PATH_INFO). E.g., http://localhost/app

	req.path_url:

	The URL of the application including the PATH_INFO. e.g.,
http://localhost/app/blog

	req.path:

	The URL including PATH_INFO without the host or scheme. e.g.,
/app/blog

	req.path_qs:

	The URL including PATH_INFO and the query string. e.g,
/app/blog?id=10

	req.query_string:

	The query string in the URL, e.g.,
id=10

	req.relative_url(url, to_application=False):

	Gives a URL, relative to the current URL. If to_application
is True, then resolves it relative to req.application_url.

Methods

There are several methods [http://pythonpaste.org/webob/class-webob.Request.html#__init__] but
only a few you’ll use often:

	Request.blank(base_url):

	Creates a new request with blank information, based at the given
URL. This can be useful for subrequests and artificial requests.
You can also use req.copy() to copy an existing request, or
for subrequests req.copy_get() which copies the request but
always turns it into a GET (which is safer to share for
subrequests).

	req.get_response(wsgi_application):

	This method calls the given WSGI application with this request,
and returns a Response object. You can also use this for
subrequests, or testing.

Unicode

Many of the properties in the request object will return unicode
values if the request encoding/charset is provided. The client can
indicate the charset with something like Content-Type:
application/x-www-form-urlencoded; charset=utf8, but browsers seldom
set this. You can set the charset with req.charset = 'utf8', or
during instantiation with Request(environ, charset='utf8'). If
you subclass Request you can also set charset as a class-level
attribute.

If it is set, then req.POST, req.GET, req.params, and
req.cookies will contain unicode strings. Each has a
corresponding req.str_* (e.g., req.str_POST) that is always
a str, and never unicode.

More Details

More detail about the request object API is available in:

	The pyramid.request.Request API documentation.

	The WebOb documentation [http://pythonpaste.org/webob]. All
methods and attributes of a webob.Request documented within the
WebOb documentation will work with request objects created by
Pyramid.

Response

The Pyramid response object can be imported as
pyramid.response.Response. This import location is merely a facade
for its original location: webob.Response.

A response object has three fundamental parts:

	response.status:

	The response code plus reason message, like '200 OK'. To set
the code without a message, use status_int, i.e.:
response.status_int = 200.

	response.headerlist:

	A list of all the headers, like [('Content-Type',
'text/html')]. There’s a case-insensitive multidict
in response.headers that also allows you to access
these same headers.

	response.app_iter:

	An iterable (such as a list or generator) that will produce the
content of the response. This is also accessible as
response.body (a string), response.unicode_body (a
unicode object, informed by response.charset), and
response.body_file (a file-like object; writing to it appends
to app_iter).

Everything else in the object derives from this underlying state.
Here’s the highlights:

	response.content_type

	The content type not including the charset parameter.
Typical use: response.content_type = 'text/html'.

	response.charset:

	The charset parameter of the content-type, it also informs
encoding in response.unicode_body.
response.content_type_params is a dictionary of all the
parameters.

	response.set_cookie(key, value, max_age=None, path='/', ...):

	Set a cookie. The keyword arguments control the various cookie
parameters. The max_age argument is the length for the cookie
to live in seconds (you may also use a timedelta object). The
Expires key will also be set based on the value of
max_age.

	response.delete_cookie(key, path='/', domain=None):

	Delete a cookie from the client. This sets max_age to 0 and
the cookie value to ''.

	response.cache_expires(seconds=0):

	This makes this response cacheable for the given number of seconds,
or if seconds is 0 then the response is uncacheable (this also
sets the Expires header).

	response(environ, start_response):

	The response object is a WSGI application. As an application, it
acts according to how you create it. It can do conditional
responses if you pass conditional_response=True when
instantiating (or set that attribute later). It can also do HEAD
and Range requests.

Headers

Like the request, most HTTP response headers are available as
properties. These are parsed, so you can do things like
response.last_modified = os.path.getmtime(filename).

The details are available in the extracted Response documentation [http://pythonpaste.org/webob/class-webob.Response.html].

Instantiating the Response

Of course most of the time you just want to make a response.
Generally any attribute of the response can be passed in as a keyword
argument to the class; e.g.:

	1
2

	from pyramid.response import Response
response = Response(body='hello world!', content_type='text/plain')

The status defaults to '200 OK'. The content_type does not default to
anything, though if you subclass pyramid.response.Response and set
default_content_type you can override this behavior.

Exception Responses

To facilitate error responses like 404 Not Found, the module
webob.exc contains classes for each kind of error response. These
include boring, but appropriate error bodies. The exceptions exposed by this
module, when used under Pyramid, should be imported from the
pyramid.httpexceptions “facade” module. This import location is merely
a facade for the original location of these exceptions: webob.exc.

Each class is named pyramid.httpexceptions.HTTP*, where * is the reason
for the error. For instance, pyramid.httpexceptions.HTTPNotFound. It
subclasses pyramid.Response, so you can manipulate the instances in
the same way. A typical example is:

	1
2
3
4
5
6

	from pyramid.httpexceptions import HTTPNotFound
from pyramid.httpexceptions import HTTPMovedPermanently

response = HTTPNotFound('There is no such resource')
or:
response = HTTPMovedPermanently(location=new_url)

These are not exceptions unless you are using Python 2.5+, because
they are new-style classes which are not allowed as exceptions until
Python 2.5. To get an exception object use response.exception.
You can use this like:

	1
2
3
4
5
6
7
8
9

	from pyramid.httpexceptions import HTTPException
from pyramid.httpexceptions import HTTPNotFound

def aview(request):
 try:
 # ... stuff ...
 raise HTTPNotFound('No such resource').exception
 except HTTPException, e:
 return request.get_response(e)

The exceptions are still WSGI applications, but you cannot set
attributes like content_type, charset, etc. on these exception
objects.

More Details

More details about the response object API are available in the
pyramid.response documentation. More details about exception responses
are in the pyramid.httpexceptions API documentation. The WebOb
documentation [http://pythonpaste.org/webob] is also useful.

Multidict

Several parts of WebOb use a “multidict”; this is a dictionary where a
key can have multiple values. The quintessential example is a query
string like ?pref=red&pref=blue; the pref variable has two
values: red and blue.

In a multidict, when you do request.GET['pref'] you’ll get back
only 'blue' (the last value of pref). Sometimes returning a
string, and sometimes returning a list, is the cause of frequent
exceptions. If you want all the values back, use
request.GET.getall('pref'). If you want to be sure there is one
and only one value, use request.GET.getone('pref'), which will
raise an exception if there is zero or more than one value for
pref.

When you use operations like request.GET.items() you’ll get back
something like [('pref', 'red'), ('pref', 'blue')]. All the
key/value pairs will show up. Similarly request.GET.keys()
returns ['pref', 'pref']. Multidict is a view on a list of
tuples; all the keys are ordered, and all the values are ordered.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Session Objects

A session is a namespace which is valid for some period of
continual activity that can be used to represent a user’s interaction
with a web application.

Using The Default Session Factory

In order to use sessions, you must set up a session factory
during your Pyramid configuration.

A very basic, insecure sample session factory implementation is
provided in the Pyramid core. It uses a cookie to store
session information. This implementation has the following
limitation:

	The session information in the cookies used by this implementation
is not encrypted, so it can be viewed by anyone with access to the
cookie storage of the user’s browser or anyone with access to the
network along which the cookie travels.

	The maximum number of bytes that are storable in a serialized
representation of the session is fewer than 4000. This is
suitable only for very small data sets.

It is, however, digitally signed, and thus its data cannot easily be
tampered with.

You can configure this session factory in your Pyramid
application by using the session_factory argument to the
pyramid.config.Configurator class:

	1
2
3
4
5

	from pyramid.session import UnencryptedCookieSessionFactoryConfig
my_session_factory = UnencryptedCookieSessionFactoryConfig('itsaseekreet')

from pyramid.config import Configurator
config = Configurator(session_factory = my_session_factory)

Warning

Note the very long, very explicit name for
UnencryptedCookieSessionFactoryConfig. It’s trying to tell you that
this implementation is, by default, unencrypted. You should not use it
when you keep sensitive information in the session object, as the
information can be easily read by both users of your application and third
parties who have access to your users’ network traffic. Use a different
session factory implementation (preferably one which keeps session data on
the server) for anything but the most basic of applications where “session
security doesn’t matter”.

Using a Session Object

Once a session factory has been configured for your application, you
can access session objects provided by the session factory via
the session attribute of any request object. For
example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from pyramid.response import Response

def myview(request):
 session = request.session
 if 'abc' in session:
 session['fred'] = 'yes'
 session['abc'] = '123'
 if 'fred' in session:
 return Response('Fred was in the session')
 else:
 return Response('Fred was not in the session')

You can use a session much like a Python dictionary. It supports all
dictionary methods, along with some extra attributes, and methods.

Extra attributes:

	created

	An integer timestamp indicating the time that this session was created.

	new

	A boolean. If new is True, this session is new. Otherwise, it has
been constituted from data that was already serialized.

Extra methods:

	changed()

	Call this when you mutate a mutable value in the session namespace.
See the gotchas below for details on when, and why you should
call this.

	invalidate()

	Call this when you want to invalidate the session (dump all data,
and – perhaps – set a clearing cookie).

The formal definition of the methods and attributes supported by the
session object are in the pyramid.interfaces.ISession
documentation.

Some gotchas:

	Keys and values of session data must be pickleable. This means,
typically, that they must be instances of basic types of objects,
such as strings, lists, dictionaries, tuples, integers, etc. If you
place an object in a session data key or value that is not
pickleable, an error will be raised when the session is serialized.

	If you place a mutable value (for example, a list or a dictionary)
in a session object, and you subsequently mutate that value, you must
call the changed() method of the session object. In this case, the
session has no way to know that is was modified. However, when you
modify a session object directly, such as setting a value (i.e.,
__setitem__), or removing a key (e.g., del or pop), the
session will automatically know that it needs to re-serialize its
data, thus calling changed() is unnecessary. There is no harm in
calling changed() in either case, so when in doubt, call it after
you’ve changed sessioning data.

Using Alternate Session Factories

At the time of this writing, exactly one alternate session factory
implementation exists, named pyramid_beaker. This is a session
factory that uses the Beaker [http://beaker.groovie.org/] library
as a backend. Beaker has support for file-based sessions, database
based sessions, and encrypted cookie-based sessions. See
http://github.com/Pylons/pyramid_beaker for more information about
pyramid_beaker.

Creating Your Own Session Factory

If none of the default or otherwise available sessioning
implementations for Pyramid suit you, you may create your own
session object by implementing a session factory. Your
session factory should return a session. The interfaces for
both types are available in
pyramid.interfaces.ISessionFactory and
pyramid.interfaces.ISession. You might use the cookie
implementation in the pyramid.session module as inspiration.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Security

Pyramid provides an optional declarative authorization system that
prevents a view from being invoked when the user represented by
credentials in the request does not have an appropriate level of
access when a particular resource is the context. Here’s how it
works at a high level:

	A request is generated when a user visits our application.

	Based on the request, a context resource is located through
resource location. A context is located differently depending on
whether the application uses traversal or URL dispatch, but
a context is ultimately found in either case. See
Resource Location and View Lookup for more information about resource
location.

	A view callable is located by view lookup using the
context as well as other attributes of the request.

	If an authentication policy is in effect, it is passed the
request; it returns some number of principal identifiers.

	If an authorization policy is in effect and the view
configuration associated with the view callable that was found has
a permission associated with it, the authorization policy is
passed the context, some number of principal
identifiers returned by the authentication policy, and the
permission associated with the view; it will allow or deny
access.

	If the authorization policy allows access, the view callable is
invoked.

	If the authorization policy denies access, the view callable is not
invoked; instead the forbidden view is invoked.

Authorization is enabled by modifying your application to include an
authentication policy and authorization policy.
Pyramid comes with a variety of implementations of these
policies. To provide maximal flexibility, Pyramid also
allows you to create custom authentication policies and authorization
policies.

Enabling an Authorization Policy

By default, Pyramid enables no authorization policy. All
views are accessible by completely anonymous users. In order to begin
protecting views from execution based on security settings, you need
to enable an authorization policy.

Enabling an Authorization Policy Imperatively

Passing an authorization_policy argument to the constructor of the
pyramid.config.Configurator class enables an
authorization policy.

You must also enable an authentication policy in order to
enable the authorization policy. This is because authorization, in
general, depends upon authentication. Use the
authentication_policy argument to the
pyramid.config.Configurator class during
application setup to specify an authentication policy.

For example:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator
from pyramid.authentication import AuthTktAuthenticationPolicy
from pyramid.authorization import ACLAuthorizationPolicy
authentication_policy = AuthTktAuthenticationPolicy('seekrit')
authorization_policy = ACLAuthorizationPolicy()
config = Configurator(authentication_policy=authentication_policy,
 authorization_policy=authorization_policy)

Note

the authentication_policy and authorization_policy
arguments may also be passed to the Configurator as dotted
Python name values, each representing the dotted name path to a
suitable implementation global defined at Python module scope.

The above configuration enables a policy which compares the value of an “auth
ticket” cookie passed in the request’s environment which contains a reference
to a single principal against the principals present in any
ACL found in the resource tree when attempting to call some
view.

While it is possible to mix and match different authentication and
authorization policies, it is an error to pass an authentication
policy without the authorization policy or vice versa to a
Configurator constructor.

See also the pyramid.authorization and
pyramid.authentication modules for alternate implementations
of authorization and authentication policies.

You can also enable a security policy declaratively via ZCML. See
Enabling an Authorization Policy Via ZCML.

Protecting Views with Permissions

To protect a view callable from invocation based on a user’s security
settings when a particular type of resource becomes the context, you
must pass a permission to view configuration. Permissions
are usually just strings, and they have no required composition: you can name
permissions whatever you like.

For example, the following view declaration protects the view named
add_entry.html when the context resource is of type Blog with the
add permission using the pyramid.config.Configurator.add_view()
API:

	1
2
3
4
5
6

	# config is an instance of pyramid.config.Configurator

config.add_view('mypackage.views.blog_entry_add_view',
 name='add_entry.html',
 context='mypackage.resources.Blog',
 permission='add')

The equivalent view registration including the add permission name
may be performed via the @view_config decorator:

	1
2
3
4
5
6
7

	from pyramid.view import view_config
from resources import Blog

@view_config(context=Blog, name='add_entry.html', permission='add')
def blog_entry_add_view(request):
 """ Add blog entry code goes here """
 pass

Or the same thing can be done using the permission attribute of the ZCML
view directive.

As a result of any of these various view configuration statements, if an
authorization policy is in place when the view callable is found during
normal application operations, the requesting user will need to possess the
add permission against the context resource in order to be able
to invoke the blog_entry_add_view view. If he does not, the
Forbidden view will be invoked.

Setting a Default Permission

If a permission is not supplied to a view configuration, the
registered view always be executable by entirely anonymous users: any
authorization policy in effect is ignored.

In support of making it easier to configure applications which are
“secure by default”, Pyramid allows you to configure a
default permission. If supplied, the default permission is used as
the permission string to all view registrations which don’t otherwise
name a permission argument.

These APIs are in support of configuring a default permission for an
application:

	The default_permission constructor argument to the
pyramid.config.Configurator constructor.

	The
pyramid.config.Configurator.set_default_permission()
method.

	The default_permission ZCML directive.

When a default permission is registered:

	if a view configuration names an explicit permission, the default
permission is ignored for that view registration, and the
view-configuration-named permission is used.

	if a view configuration names an explicit permission as the string
__no_permission_required__, the default permission is ignored,
and the view is registered without a permission (making it
available to all callers regardless of their credentials).

Assigning ACLs to your Resource Objects

When the default Pyramid authorization policy determines
whether a user possesses a particular permission with respect to a resource,
it examines the ACL associated with the resource. An ACL is
associated with a resource by adding an __acl__ attribute to the resource
object. This attribute can be defined on the resource instance if you need
instance-level security, or it can be defined on the resource class if you
just need type-level security.

For example, an ACL might be attached to the resource for a blog via its
class:

	1
2
3
4
5
6
7
8
9

	from pyramid.security import Everyone
from pyramid.security import Allow

class Blog(object):
 __acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

Or, if your resources are persistent, an ACL might be specified via the
__acl__ attribute of an instance of a resource:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from pyramid.security import Everyone
from pyramid.security import Allow

class Blog(object):
 pass

blog = Blog()

blog.__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

Whether an ACL is attached to a resource’s class or an instance of the
resource itself, the effect is the same. It is useful to decorate individual
resource instances with an ACL (as opposed to just decorating their class) in
applications such as “CMS” systems where fine-grained access is required on
an object-by-object basis.

Elements of an ACL

Here’s an example ACL:

	1
2
3
4
5
6
7
8

	from pyramid.security import Everyone
from pyramid.security import Allow

__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', 'add'),
 (Allow, 'group:editors', 'edit'),
]

The example ACL indicates that the
pyramid.security.Everyone principal – a special
system-defined principal indicating, literally, everyone – is allowed
to view the blog, the group:editors principal is allowed to add to
and edit the blog.

Each element of an ACL is an ACE or access control entry.
For example, in the above code block, there are three ACEs: (Allow,
Everyone, 'view'), (Allow, 'group:editors', 'add'), and
(Allow, 'group:editors', 'edit').

The first element of any ACE is either
pyramid.security.Allow, or
pyramid.security.Deny, representing the action to take when
the ACE matches. The second element is a principal. The
third argument is a permission or sequence of permission names.

A principal is usually a user id, however it also may be a group id if your
authentication system provides group information and the effective
authentication policy policy is written to respect group information.
For example, the
pyramid.authentication.RepozeWho1AuthenicationPolicy respects group
information if you configure it with a callback. See
Built-In Authentication Policy ZCML Directives for more information about
the callback attribute.

Each ACE in an ACL is processed by an authorization policy in the
order dictated by the ACL. So if you have an ACL like this:

	1
2
3
4
5
6
7
8

	from pyramid.security import Everyone
from pyramid.security import Allow
from pyramid.security import Deny

__acl__ = [
 (Allow, Everyone, 'view'),
 (Deny, Everyone, 'view'),
]

The default authorization policy will allow everyone the view
permission, even though later in the ACL you have an ACE that denies
everyone the view permission. On the other hand, if you have an ACL
like this:

	1
2
3
4
5
6
7
8

	from pyramid.security import Everyone
from pyramid.security import Allow
from pyramid.security import Deny

__acl__ = [
 (Deny, Everyone, 'view'),
 (Allow, Everyone, 'view'),
]

The authorization policy will deny everyone the view permission, even
though later in the ACL is an ACE that allows everyone.

The third argument in an ACE can also be a sequence of permission
names instead of a single permission name. So instead of creating
multiple ACEs representing a number of different permission grants to
a single group:editors group, we can collapse this into a single
ACE, as below.

	1
2
3
4
5
6
7

	from pyramid.security import Everyone
from pyramid.security import Allow

__acl__ = [
 (Allow, Everyone, 'view'),
 (Allow, 'group:editors', ('add', 'edit')),
]

Special Principal Names

Special principal names exist in the pyramid.security
module. They can be imported for use in your own code to populate
ACLs, e.g. pyramid.security.Everyone.

pyramid.security.Everyone

Literally, everyone, no matter what. This object is actually a
string “under the hood” (system.Everyone). Every user “is” the
principal named Everyone during every request, even if a security
policy is not in use.

pyramid.security.Authenticated

Any user with credentials as determined by the current security
policy. You might think of it as any user that is “logged in”.
This object is actually a string “under the hood”
(system.Authenticated).

Special Permissions

Special permission names exist in the pyramid.security
module. These can be imported for use in ACLs.

pyramid.security.ALL_PERMISSIONS

An object representing, literally, all permissions. Useful in an
ACL like so: (Allow, 'fred', ALL_PERMISSIONS). The
ALL_PERMISSIONS object is actually a stand-in object that has a
__contains__ method that always returns True, which, for all
known authorization policies, has the effect of indicating that a
given principal “has” any permission asked for by the system.

Special ACEs

A convenience ACE is defined representing a deny to everyone of all
permissions in pyramid.security.DENY_ALL. This ACE is often used as
the last ACE of an ACL to explicitly cause inheriting authorization
policies to “stop looking up the traversal tree” (effectively breaking any
inheritance). For example, an ACL which allows only fred the view
permission for a particular resource despite what inherited ACLs may say when
the default authorization policy is in effect might look like so:

	1
2
3
4

	from pyramid.security import Allow
from pyramid.security import DENY_ALL

__acl__ = [(Allow, 'fred', 'view'), DENY_ALL]

“Under the hood”, the pyramid.security.DENY_ALL ACE equals
the following:

	1
2

	from pyramid.security import ALL_PERMISSIONS
__acl__ = [(Deny, Everyone, ALL_PERMISSIONS)]

ACL Inheritance and Location-Awareness

While the default authorization policy is in place, if a resource
object does not have an ACL when it is the context, its parent is consulted
for an ACL. If that object does not have an ACL, its parent is consulted
for an ACL, ad infinitum, until we’ve reached the root and there are no more
parents left.

In order to allow the security machinery to perform ACL inheritance, resource
objects must provide location-awareness. Providing location-awareness
means two things: the root object in the resource tree must have a
_name__ attribute and a __parent__ attribute.

	1
2
3

	class Blog(object):
 __name__ = ''
 __parent__ = None

An object with a __parent__ attribute and a __name__ attribute
is said to be location-aware. Location-aware objects define an
__parent__ attribute which points at their parent object. The
root object’s __parent__ is None.

See pyramid.location for documentations of functions which use
location-awareness. See also Location-Aware Resources.

Changing the Forbidden View

When Pyramid denies a view invocation due to an
authorization denial, the special forbidden view is invoked. “Out
of the box”, this forbidden view is very plain. See
Changing the Forbidden View within Using Hooks for
instructions on how to create a custom forbidden view and arrange for
it to be called when view authorization is denied.

Debugging View Authorization Failures

If your application in your judgment is allowing or denying view
access inappropriately, start your application under a shell using the
PYRAMID_DEBUG_AUTHORIZATION environment variable set to 1. For
example:

$ PYRAMID_DEBUG_AUTHORIZATION=1 bin/paster serve myproject.ini

When any authorization takes place during a top-level view rendering,
a message will be logged to the console (to stderr) about what ACE in
which ACL permitted or denied the authorization based on
authentication information.

This behavior can also be turned on in the application .ini file
by setting the debug_authorization key to true within the
application’s configuration section, e.g.:

	1
2
3

	[app:main]
use = egg:MyProject#app
debug_authorization = true

With this debug flag turned on, the response sent to the browser will
also contain security debugging information in its body.

Debugging Imperative Authorization Failures

The pyramid.security.has_permission() API is used to check
security within view functions imperatively. It returns instances of
objects that are effectively booleans. But these objects are not raw
True or False objects, and have information attached to them
about why the permission was allowed or denied. The object will be
one of pyramid.security.ACLAllowed,
pyramid.security.ACLDenied,
pyramid.security.Allowed, or
pyramid.security.Denied, as documented in
pyramid.security. At the very minimum these objects will have a
msg attribute, which is a string indicating why the permission was
denied or allowed. Introspecting this information in the debugger or
via print statements when a call to
pyramid.security.has_permission() fails is often useful.

Creating Your Own Authentication Policy

Pyramid ships with a number of useful out-of-the-box
security policies (see pyramid.authentication). However,
creating your own authentication policy is often necessary when you
want to control the “horizontal and vertical” of how your users
authenticate. Doing so is a matter of creating an instance of something
that implements the following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	class AuthenticationPolicy(object):
 """ An object representing a Pyramid authentication policy. """
 def authenticated_userid(self, request):
 """ Return the authenticated userid or ``None`` if no
 authenticated userid can be found. """

 def effective_principals(self, request):
 """ Return a sequence representing the effective principals
 including the userid and any groups belonged to by the current
 user, including 'system' groups such as Everyone and
 Authenticated. """

 def remember(self, request, principal, **kw):
 """ Return a set of headers suitable for 'remembering' the
 principal named ``principal`` when set in a response. An
 individual authentication policy and its consumers can decide
 on the composition and meaning of **kw. """

 def forget(self, request):
 """ Return a set of headers suitable for 'forgetting' the
 current user on subsequent requests. """

After you do so, you can pass an instance of such a class into the
pyramid.config.Configurator class at configuration
time as authentication_policy to use it.

Creating Your Own Authorization Policy

An authorization policy is a policy that allows or denies access after
a user has been authenticated. By default, Pyramid will use
the pyramid.authorization.ACLAuthorizationPolicy if an
authentication policy is activated and an authorization policy isn’t
otherwise specified.

In some cases, it’s useful to be able to use a different
authorization policy than the default
pyramid.authorization.ACLAuthorizationPolicy. For
example, it might be desirable to construct an alternate authorization
policy which allows the application to use an authorization mechanism
that does not involve ACL objects.

Pyramid ships with only a single default authorization
policy, so you’ll need to create your own if you’d like to use a
different one. Creating and using your own authorization policy is a
matter of creating an instance of an object that implements the
following interface:

	1
2
3
4
5
6
7
8
9

	class IAuthorizationPolicy(object):
 """ An object representing a Pyramid authorization policy. """
 def permits(self, context, principals, permission):
 """ Return True if any of the principals is allowed the
 permission in the current context, else return False """

 def principals_allowed_by_permission(self, context, permission):
 """ Return a set of principal identifiers allowed by the
 permission """

After you do so, you can pass an instance of such a class into the
pyramid.config.Configurator class at configuration
time as authorization_policy to use it.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Combining Traversal and URL Dispatch

When you write most Pyramid applications, you’ll be using one or the
other of two available resource location subsystems: traversal or URL
dispatch. However, to solve a limited set of problems, it’s useful to use
both traversal and URL dispatch together within the same application.
Pyramid makes this possible via hybrid applications.

Warning

Reasoning about the behavior of a “hybrid” URL dispatch + traversal
application can be challenging. To successfully reason about using
URL dispatch and traversal together, you need to understand URL
pattern matching, root factories, and the traversal
algorithm, and the potential interactions between them. Therefore,
we don’t recommend creating an application that relies on hybrid
behavior unless you must.

A Review of Non-Hybrid Applications

When used according to the tutorials in its documentation
Pyramid is a “dual-mode” framework: the tutorials explain
how to create an application in terms of using either url
dispatch or traversal. This chapter details how you might
combine these two dispatch mechanisms, but we’ll review how they work
in isolation before trying to combine them.

URL Dispatch Only

An application that uses url dispatch exclusively to map URLs to code
will often have statements like this within your application startup
configuration:

	1
2
3
4

	# config is an instance of pyramid.config.Configurator

config.add_route('foobar', '{foo}/{bar}', view='myproject.views.foobar')
config.add_route('bazbuz', '{baz}/{buz}', view='myproject.views.bazbuz')

Each route typically corresponds to a single view callable,
and when that route is matched during a request, the view callable
named by the view attribute is invoked.

Typically, an application that uses only URL dispatch won’t perform any calls
to pyramid.config.Configurator.add_view() in its startup code.

Traversal Only

An application that uses only traversal will have view configuration
declarations that look like this:

	1
2
3
4

	 # config is an instance of pyramid.config.Configurator

 config.add_view('mypackage.views.foobar', name='foobar')
 config.add_view('mypackage.views.bazbuz', name='bazbuz')

When the above configuration is applied to an application, the
mypackage.views.foobar view callable above will be called when the URL
/foobar is visited. Likewise, the view mypackage.views.bazbuz will
be called when the URL /bazbuz is visited.

Typically, an application that uses traversal exclusively won’t perform any
calls to pyramid.config.Configurator.add_route() in its startup
code.

Hybrid Applications

Either traversal or url dispatch alone can be used to create a
Pyramid application. However, it is also possible to
combine the concepts of traversal and url dispatch when building an
application: the result is a hybrid application. In a hybrid
application, traversal is performed after a particular route has
matched.

A hybrid application is a lot more like a “pure” traversal-based
application than it is like a “pure” URL-dispatch based application.
But unlike in a “pure” traversal-based application, in a hybrid
application, traversal is performed during a request after a
route has already matched. This means that the URL pattern that
represents the pattern argument of a route must match the
PATH_INFO of a request, and after the route pattern has matched,
most of the “normal” rules of traversal with respect to resource
location and view lookup apply.

There are only four real differences between a purely traversal-based
application and a hybrid application:

	In a purely traversal based application, no routes are defined; in a
hybrid application, at least one route will be defined.

	In a purely traversal based application, the root object used is
global, implied by the root factory provided at startup
time; in a hybrid application, the root object at which
traversal begins may be varied on a per-route basis.

	In a purely traversal-based application, the PATH_INFO of the
underlying WSGI environment is used wholesale as a traversal
path; in a hybrid application, the traversal path is not the entire
PATH_INFO string, but a portion of the URL determined by a
matching pattern in the matched route configuration’s pattern.

	In a purely traversal based application, view configurations which
do not mention a route_name argument are considered during
view lookup; in a hybrid application, when a route is
matched, only view configurations which mention that route’s name as
a route_name are considered during view lookup.

More generally, a hybrid application is a traversal-based
application except:

	the traversal root is chosen based on the route configuration of
the route that matched instead of from the root_factory supplied
during application startup configuration.

	the traversal path is chosen based on the route configuration of
the route that matched rather than from the PATH_INFO of a
request.

	the set of views that may be chosen during view lookup when
a route matches are limited to those which specifically name a
route_name in their configuration that is the same as the
matched route’s name.

To create a hybrid mode application, use a route configuration
that implies a particular root factory and which also includes
a pattern argument that contains a special dynamic part: either
*traverse or *subpath.

The Root Object for a Route Match

A hybrid application implies that traversal is performed during a
request after a route has matched. Traversal, by definition, must
always begin at a root object. Therefore it’s important to know
which root object will be traversed after a route has matched.

Figuring out which root object results from a particular route
match is straightforward. When a route is matched:

	If the route’s configuration has a factory argument which
points to a root factory callable, that callable will be
called to generate a root object.

	If the route’s configuration does not have a factory
argument, the global root factory will be called to
generate a root object. The global root factory is the
callable implied by the root_factory argument passed to
pyramid.config.Configurator at application
startup time.

	If a root_factory argument is not provided to the
pyramid.config.Configurator at startup time, a
default root factory is used. The default root factory is used to
generate a root object.

Note

Root factories related to a route were explained previously within
Route Factories. Both the global root factory and default
root factory were explained previously within
The Resource Tree.

Using *traverse In a Route Pattern

A hybrid application most often implies the inclusion of a route
configuration that contains the special token *traverse at the end
of a route’s pattern:

	1

	config.add_route('home', '{foo}/{bar}/*traverse')

A *traverse token at the end of the pattern in a route’s
configuration implies a “remainder” capture value. When it is used,
it will match the remainder of the path segments of the URL. This
remainder becomes the path used to perform traversal.

Note

The *remainder route pattern syntax is explained in more
detail within Route Pattern Syntax.

Note that unlike the examples provided within URL Dispatch, the
add_route configuration statement named previously does not pass a
view argument. This is because a hybrid mode application relies on
traversal to do resource location and view lookup
instead of invariably invoking a specific view callable named directly within
the matched route’s configuration.

Because the pattern of the above route ends with *traverse, when this
route configuration is matched during a request, Pyramid will attempt
to use traversal against the root object implied by the
root factory that is implied by the route’s configuration. Since no
root_factory argument is explicitly specified for this route, this will
either be the global root factory for the application, or the default
root factory. Once traversal has found a context resource,
view lookup will be invoked in almost exactly the same way it would
have been invoked in a “pure” traversal-based application.

Let’s assume there is no global root factory configured in
this application. The default root factory cannot be traversed:
it has no useful __getitem__ method. So we’ll need to associate
this route configuration with a custom root factory in order to
create a useful hybrid application. To that end, let’s imagine that
we’ve created a root factory that looks like so in a module named
routes.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	class Resource(object):
 def __init__(self, subobjects):
 self.subobjects = subobjects

 def __getitem__(self, name):
 return self.subobjects[name]

root = Traversable(
 {'a':Resource({'b':Resource({'c':Resource({})})})}
)

def root_factory(request):
 return root

Above, we’ve defined a (bogus) resource tree that can be traversed, and a
root_factory function that can be used as part of a particular route
configuration statement:

	1
2

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')

The factory above points at the function we’ve defined. It will return
an instance of the Traversable class as a root object whenever this route
is matched. Instances of the``Resource`` class can be used for tree
traversal because they have a __getitem__ method that does something
nominally useful. Since traversal uses __getitem__ to walk the resources
of a resource tree, using traversal against the root resource implied by our
route statement is a reasonable thing to do.

Note

We could have also used our root_factory callable as the
root_factory argument of the
pyramid.config.Configurator constructor, instead
of associating it with a particular route inside the route’s
configuration. Every hybrid route configuration that is matched but
which does not name a factory attribute will use the use
global root_factory function to generate a root object.

When the route configuration named home above is matched during a
request, the matchdict generated will be based on its pattern:
{foo}/{bar}/*traverse. The “capture value” implied by the *traverse
element in the pattern will be used to traverse the resource tree in order to
find a context resource, starting from the root object returned from the root
factory. In the above example, the root object found will be the
instance named root in routes.py.

If the URL that matched a route with the pattern {foo}/{bar}/*traverse,
is http://example.com/one/two/a/b/c, the traversal path used
against the root object will be a/b/c. As a result,
Pyramid will attempt to traverse through the edges a,
b, and c, beginning at the root object.

In our above example, this particular set of traversal steps will mean that
the context resource of the view would be the Traversable object
we’ve named c in our bogus resource tree and the view name
resulting from traversal will be the empty string; if you need a refresher
about why this outcome is presumed, see The Traversal Algorithm.

At this point, a suitable view callable will be found and invoked
using view lookup as described in View Configuration: Mapping a Resource or URL Pattern to a View Callable,
but with a caveat: in order for view lookup to work, we need to define
a view configuration that will match when view lookup is
invoked after a route matches:

	1
2
3

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')
config.add_view('mypackage.views.myview', route_name='home')

Note that the above call to
pyramid.config.Configurator.add_view() includes a route_name
argument. View configurations that include a route_name argument are
meant to associate a particular view declaration with a route, using the
route’s name, in order to indicate that the view should only be invoked when
the route matches.

Calls to pyramid.config.Configurator.add_view() may pass a
route_name attribute, which refers to the value of an existing route’s
name argument. In the above example, the route name is home,
referring to the name of the route defined above it.

The above mypackage.views.myview view callable will be invoked when:

	the route named “home” is matched

	the view name resulting from traversal is the empty string.

	the context resource is any object.

It is also possible to declare alternate views that may be invoked
when a hybrid route is matched:

	1
2
3
4
5

	config.add_route('home', '{foo}/{bar}/*traverse',
 factory='mypackage.routes.root_factory')
config.add_view('mypackage.views.myview', name='home')
config.add_view('mypackage.views.another_view', name='another',
 route_name='home')

The add_view call for mypackage.views.another_view above names a
different view and, more importantly, a different view name. The
above mypackage.views.another_view view will be invoked when:

	the route named “home” is matched

	the view name resulting from traversal is another.

	the context resource is any object.

For instance, if the URL http://example.com/one/two/a/another is provided
to an application that uses the previously mentioned resource tree, the
mypackage.views.another view callable will be called instead of the
mypackage.views.myview view callable because the view name will
be another instead of the empty string.

More complicated matching can be composed. All arguments to route
configuration statements and view configuration statements are
supported in hybrid applications (such as predicate
arguments).

Using the traverse Argument In a Route Definition

Rather than using the *traverse remainder marker in a pattern, you
can use the traverse argument to the
pyramid.config.Configurator.add_route() method.

When you use the *traverse remainder marker, the traversal path is
limited to being the remainder segments of a request URL when a route
matches. However, when you use the traverse argument or
attribute, you have more control over how to compose a traversal path.

Here’s a use of the traverse pattern in a call to
pyramid.config.Configurator.add_route():

	1
2

	config.add_route('abc', '/articles/{article}/edit',
 traverse='/articles/{article}')

The syntax of the traverse argument is the same as it is for
pattern.

If, as above, the pattern provided is articles/{article}/edit,
and the traverse argument provided is /{article}, when a
request comes in that causes the route to match in such a way that the
article match value is 1 (when the request URI is
/articles/1/edit), the traversal path will be generated as /1.
This means that the root object’s __getitem__ will be called with
the name 1 during the traversal phase. If the 1 object
exists, it will become the context of the request.
The Traversal chapter has more information about traversal.

If the traversal path contains segment marker names which are not
present in the pattern argument, a runtime error will occur. The
traverse pattern should not contain segment markers that do not
exist in the path.

Note that the traverse argument is ignored when attached to a
route that has a *traverse remainder marker in its pattern.

Traversal will begin at the root object implied by this route (either
the global root, or the object returned by the factory associated
with this route).

Making Global Views Match

By default, only view configurations that mention a route_name
will be found during view lookup when a route that has a *traverse
in its pattern matches. You can allow views without a route_name
attribute to match a route by adding the use_global_views flag to
the route definition. For example, the myproject.views.bazbuz
view below will be found if the route named abc below is matched
and the PATH_INFO is /abc/bazbuz, even though the view
configuration statement does not have the route_name="abc"
attribute.

	1
2

	config.add_route('abc', '/abc/*traverse', use_global_views=True)
config.add_view('myproject.views.bazbuz', name='bazbuz')

Using *subpath in a Route Pattern

There are certain extremely rare cases when you’d like to influence
the traversal subpath when a route matches without actually
performing traversal. For instance, the
pyramid.wsgi.wsgiapp2() decorator and the
pyramid.view.static helper attempt to compute
PATH_INFO from the request’s subpath, so it’s useful to be able to
influence this value.

When *subpath exists in a pattern, no path is actually traversed,
but the traversal algorithm will return a subpath list implied
by the capture value of *subpath. You’ll see this pattern most
commonly in route declarations that look like this:

	1
2

	config.add_route('static', '/static/*subpath',
 view='mypackage.views.static_view')

Where mypackage.views.static_view is an instance of
pyramid.view.static. This effectively tells the static helper to
traverse everything in the subpath as a filename.

Corner Cases

A number of corner case “gotchas” exist when using a hybrid
application. We’ll detail them here.

Registering a Default View for a Route That Has a view Attribute

It is an error to provide both a view argument to a route
configuration and a view configuration which names a
route_name that has no name value or the empty name value. For
example, this pair of declarations will generate a “conflict” error at
startup time.

	1
2
3

	config.add_route('home', '{foo}/{bar}/*traverse',
 view='myproject.views.home')
config.add_view('myproject.views.another', route_name='home')

This is because the view argument to the
pyramid.config.Configurator.add_route() above is an implicit
default view when that route matches. add_route calls don’t need to
supply a view attribute. For example, this add_route call:

	1
2

	config.add_route('home', '{foo}/{bar}/*traverse',
 view='myproject.views.home')

Can also be spelled like so:

	1
2

	config.add_route('home', '{foo}/{bar}/*traverse')
config.add_view('myproject.views.home', route_name='home')

The two spellings are logically equivalent. In fact, the former is
just a syntactical shortcut for the latter.

Binding Extra Views Against a Route Configuration that Doesn’t Have a *traverse Element In Its Pattern

Here’s another corner case that just makes no sense:

	1
2
3

	config.add_route('abc', '/abc', view='myproject.views.abc')
config.add_view('myproject.views.bazbuz', name='bazbuz',
 route_name='abc')

The above view declaration is useless, because it will never be matched when
the route it references has matched. Only the view associated with the route
itself (myproject.views.abc) will ever be invoked when the route matches,
because the default view is always invoked when a route matches and when no
post-match traversal is performed.

To make the above view declaration useful, the special *traverse
token must end the route’s pattern. For example:

	1
2
3

	config.add_route('abc', '/abc/*traverse', view='myproject.views.abc')
config.add_view('myproject.views.bazbuz', name='bazbuz',
 route_name='abc')

With the above configuration, the myproject.views.bazbuz view will
be invoked when the request URI is /abc/bazbuz, assuming there is
no object contained by the root object with the key bazbuz. A
different request URI, such as /abc/foo/bar, would invoke the
default myproject.views.abc view.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Internationalization and Localization

Internationalization (i18n) is the act of creating software
with a user interface that can potentially be displayed in more than
one language or cultural context. Localization (l10n) is the
process of displaying the user interface of an internationalized
application in a particular language or cultural context.

Pyramid offers internationalization and localization
subsystems that can be used to translate the text of buttons, error
messages and other software- and template-defined values into the
native language of a user of your application.

Creating a Translation String

While you write your software, you can insert specialized markup into
your Python code that makes it possible for the system to translate
text values into the languages used by your application’s users. This
markup creates a translation string. A translation string is
an object that behaves mostly like a normal Unicode object, except that
it also carries around extra information related to its job as part of
the Pyramid translation machinery.

Using The TranslationString Class

The most primitive way to create a translation string is to use the
pyramid.i18n.TranslationString callable:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add')

This creates a Unicode-like object that is a TranslationString.

Note

For people more familiar with Zope i18n, a TranslationString
is a lot like a zope.i18nmessageid.Message object. It is not a
subclass, however. For people more familiar with Pylons or
Django i18n, using a TranslationString is a lot like using
“lazy” versions of related gettext APIs.

The first argument to pyramid.i18n.TranslationString is
the msgid; it is required. It represents the key into the
translation mappings provided by a particular localization. The
msgid argument must be a Unicode object or an ASCII string. The
msgid may optionally contain replacement markers. For instance:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}')

Within the string above, ${number} is a replacement marker. It
will be replaced by whatever is in the mapping for a translation
string. The mapping may be supplied at the same time as the
replacement marker itself:

	1
2

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1})

Any number of replacement markers can be present in the msgid value,
any number of times. Only markers which can be replaced by the values
in the mapping will be replaced at translation time. The others
will not be interpolated and will be output literally.

A translation string should also usually carry a domain. The domain
represents a translation category to disambiguate it from other
translations of the same msgid, in case they conflict.

	1
2
3

	from pyramid.i18n import TranslationString
ts = TranslationString('Add ${number}', mapping={'number':1},
 domain='form')

The above translation string named a domain of form. A
translator function will often use the domain to locate the
right translator file on the filesystem which contains translations
for a given domain. In this case, if it were trying to translate
our msgid to German, it might try to find a translation from a
gettext file within a translation directory like this
one:

locale/de/LC_MESSAGES/form.mo

In other words, it would want to take translations from the form.mo
translation file in the German language.

Finally, the TranslationString constructor accepts a default
argument. If a default argument is supplied, it replaces usages
of the msgid as the default value for the translation string.
When default is None, the msgid value passed to a
TranslationString is used as an implicit message identifier. Message
identifiers are matched with translations in translation files, so it
is often useful to create translation strings with “opaque” message
identifiers unrelated to their default text:

	1
2
3

	from pyramid.i18n import TranslationString
ts = TranslationString('add-number', default='Add ${number}',
 domain='form', mapping={'number':1})

When default text is used, Default text objects may contain
replacement values.

Using the TranslationStringFactory Class

Another way to generate a translation string is to use the
pyramid.i18n.TranslationStringFactory object. This object
is a translation string factory. Basically a translation string
factory presets the domain value of any translation string
generated by using it. For example:

	1
2
3

	from pyramid.i18n import TranslationStringFactory
_ = TranslationStringFactory('pyramid')
ts = _('Add ${number}', msgid='add-number', mapping={'number':1})

Note

We assigned the translation string factory to the name
_. This is a convention which will be supported by translation
file generation tools.

After assigning _ to the result of a
pyramid.i18n.TranslationStringFactory(), the subsequent result
of calling _ will be a pyramid.i18n.TranslationString
instance. Even though a domain value was not passed to _ (as
would have been necessary if the
pyramid.i18n.TranslationString constructor were used instead
of a translation string factory), the domain attribute of the
resulting translation string will be pyramid. As a result, the
previous code example is completely equivalent (except for spelling)
to:

	1
2
3

	from pyramid.i18n import TranslationString as _
ts = _('Add ${number}', msgid='add-number', mapping={'number':1},
 domain='pyramid')

You can set up your own translation string factory much like the one
provided above by using the
pyramid.i18n.TranslationStringFactory class. For example,
if you’d like to create a translation string factory which presets the
domain value of generated translation strings to form, you’d
do something like this:

	1
2
3

	from pyramid.i18n import TranslationStringFactory
_ = TranslationStringFactory('form')
ts = _('Add ${number}', msgid='add-number', mapping={'number':1})

Creating a unique domain for your application via a translation string
factory is best practice. Using your own unique translation domain
allows another person to reuse your application without needing to
merge your translation files with his own. Instead, he can just
include your package’s translation directory via the
pyramid.config.Configurator.add_translation_dirs()
method.

Note

For people familiar with Zope internationalization, a
TranslationStringFactory is a lot like a
zope.i18nmessageid.MessageFactory object. It is not a
subclass, however.

Working With gettext Translation Files

The basis of Pyramid translation services is
GNU gettext. Once your application source code files and templates
are marked up with translation markers, you can work on translations
by creating various kinds of gettext files.

Note

The steps a developer must take to work with gettext
message catalog files within a Pyramid
application are very similar to the steps a Pylons
developer must take to do the same. See the Pylons
internationalization documentation [http://wiki.pylonshq.com/display/pylonsdocs/Internationalization+and+Localization]
for more information.

GNU gettext uses three types of files in the translation framework,
.pot files, .po files and .mo files.

.pot (Portable Object Template) files

A .pot file is created by a program which searches through your
project’s source code and which picks out every message
identifier passed to one of the ‘_() functions
(eg. translation string constructions). The list of all
message identifiers is placed into a .pot file, which serves as
a template for creating .po files.

.po (Portable Object) files

The list of messages in a .pot file are translated by a human to
a particular language; the result is saved as a .po file.

.mo (Machine Object) files

A .po file is turned into a machine-readable binary file, which
is the .mo file. Compiling the translations to machine code
makes the localized program run faster.

The tool for working with gettext translation files related to
a Pyramid application is Babel.

Installing Babel

In order for the commands related to working with gettext
translation files to work properly, you will need to have
Babel installed into the same environment in which
Pyramid is installed.

Installation on UNIX

If the virtualenv into which you’ve installed your
Pyramid application lives in /my/virtualenv, you can
install Babel like so:

$ cd /my/virtualenv
$ bin/easy_install Babel

Installation on Windows

If the virtualenv into which you’ve installed your
Pyramid application lives in C:\my\virtualenv, you can
install Babel like so:

C> cd \my\virtualenv
C> bin\easy_install Babel

Changing the setup.py

You need to add a few boilerplate lines to your application’s
setup.py file in order to properly generate gettext files
from your application.

Note

See Creating a Pyramid Project to learn about about the
composition of an application’s setup.py file.

In particular, add the Babel distribution to the
install_requires list and insert a set of references to
Babel message extractors within the call to
setuptools.setup() inside your application’s setup.py file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 setup(name="mypackage",
 # ...
 install_requires = [
 # ...
 'Babel',
],
 message_extractors = { '.': [
 ('**.py', 'chameleon_python', None),
 ('**.pt', 'chameleon_xml', None),
]},
)

The message_extractors stanza placed into the setup.py file
causes the Babel message catalog extraction machinery to also
consider **.pt files when doing message id extraction.

Extracting Messages from Code and Templates

Once Babel is installed and your application’s setup.py
file has the correct message extractor references, you may extract a
message catalog template from the code and Chameleon templates
which reside in your Pyramid application. You run a
setup.py command to extract the messages:

$ cd /place/where/myapplication/setup.py/lives
$ mkdir -p myapplication/locale
$ python setup.py extract_messages

The message catalog .pot template will end up in
myapplication/locale/myapplication.pot.

Translation Domains

The name myapplication above in the filename myapplication.pot
denotes the translation domain of the translations that must
be performed to localize your application. By default, the
translation domain is the project name of your
Pyramid application.

To change the translation domain of the extracted messages in your
project, edit the setup.cfg file of your application, The default
setup.cfg file of a Paster-generated Pyramid application
has stanzas in it that look something like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 [compile_catalog]
 directory = myproject/locale
 domain = MyProject
 statistics = true

 [extract_messages]
 add_comments = TRANSLATORS:
 output_file = myproject/locale/MyProject.pot
 width = 80

 [init_catalog]
 domain = MyProject
 input_file = myproject/locale/MyProject.pot
 output_dir = myproject/locale

 [update_catalog]
 domain = MyProject
 input_file = myproject/locale/MyProject.pot
 output_dir = myproject/locale
 previous = true

In the above example, the project name is MyProject. To indicate
that you’d like the domain of your translations to be mydomain
instead, change the setup.cfg file stanzas to look like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 [compile_catalog]
 directory = myproject/locale
 domain = mydomain
 statistics = true

 [extract_messages]
 add_comments = TRANSLATORS:
 output_file = myproject/locale/mydomain.pot
 width = 80

 [init_catalog]
 domain = mydomain
 input_file = myproject/locale/mydomain.pot
 output_dir = myproject/locale

 [update_catalog]
 domain = mydomain
 input_file = myproject/locale/mydomain.pot
 output_dir = myproject/locale
 previous = true

Initializing a Message Catalog File

Once you’ve extracted messages into a .pot file (see
Extracting Messages from Code and Templates), to begin localizing the messages present
in the .pot file, you need to generate at least one .po file.
A .po file represents translations of a particular set of messages
to a particular locale. Initialize a .po file for a specific
locale from a pre-generated .pot template by using the setup.py
init_catalog command:

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py init_catalog -l es

By default, the message catalog .po file will end up in
myapplication/locale/es/LC_MESSAGES/myapplication.po.

Once the file is there, it can be worked on by a human translator.
One tool which may help with this is Poedit [http://www.poedit.net/].

Note that Pyramid itself ignores the existence of all
.po files. For a running application to have translations
available, a .mo file must exist. See
Compiling a Message Catalog File.

Updating a Catalog File

If more translation strings are added to your application, or
translation strings change, you will need to update existing .po
files based on changes to the .pot file, so that the new and
changed messages can also be translated or re-translated.

First, regenerate the .pot file as per Extracting Messages from Code and Templates.
Then use the setup.py update_catalog command.

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py update_catalog

Compiling a Message Catalog File

Finally, to prepare an application for performing actual runtime
translations, compile .po files to .mo files:

$ cd /place/where/myapplication/setup.py/lives
$ python setup.py compile_catalog

This will create a .mo file for each .po file in your
application. As long as the translation directory in which
the .mo file ends up in is configured into your application, these
translations will be available to Pyramid.

Using a Localizer

A localizer is an object that allows you to perform
translation or pluralization “by hand” in an application. You may use
the pyramid.i18n.get_localizer() function to obtain a
localizer. pyramid.i18n.get_localizer(). This
function will return either the localizer object implied by the active
locale negotiator or a default localizer object if no explicit
locale negotiator is registered.

	1
2
3
4

	from pyramid.i18n import get_localizer

def aview(request):
 locale = get_localizer(request)

Performing a Translation

A localizer has a translate method which accepts either a
translation string or a Unicode string and which returns a
Unicode object representing the translation. So, generating a
translation in a view component of an application might look like so:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyramid.i18n import get_localizer
from pyramid.i18n import TranslationString

ts = TranslationString('Add ${number}', mapping={'number':1},
 domain='pyramid')

def aview(request):
 localizer = get_localizer(request)
 translated = localizer.translate(ts) # translation string
 # ... use translated ...

The pyramid.i18n.get_localizer() function will return a
pyramid.i18n.Localizer object bound to the locale name
represented by the request. The translation returned from its
pyramid.i18n.Localizer.translate() method will depend on the
domain attribute of the provided translation string as well as the
locale of the localizer.

Note

If you’re using Chameleon templates, you don’t need
to pre-translate translation strings this way. See
Chameleon Template Support for Translation Strings.

Performing a Pluralization

A localizer has a pluralize method with the following
signature:

	1
2

	def pluralize(singular, plural, n, domain=None, mapping=None):
 ...

The singular and plural arguments should each be a Unicode
value representing a message identifier. n should be an
integer. domain should be a translation domain, and
mapping should be a dictionary that is used for replacement
value interpolation of the translated string. If n is plural
for the current locale, pluralize will return a Unicode
translation for the message id plural, otherwise it will return a
Unicode translation for the message id singular.

The arguments provided as singular and/or plural may also be
translation string objects, but the domain and mapping
information attached to those objects is ignored.

	1
2
3
4
5
6

	from pyramid.i18n import get_localizer

def aview(request):
 localizer = get_localizer(request)
 translated = localizer.pluralize('Item', 'Items', 1, 'mydomain')
 # ... use translated ...

Obtaining the Locale Name for a Request

You can obtain the locale name related to a request by using the
pyramid.i18n.get_locale_name() function.

	1
2
3
4

	from pyramid.i18n import get_locale_name

def aview(request):
 locale_name = get_locale_name(request)

This returns the locale name negotiated by the currently active
locale negotiator or the default locale name if the
locale negotiator returns None. You can change the default locale
name by changing the default_locale_name setting; see
Default Locale Name.

Once pyramid.i18n.get_locale_name() is first run, the locale
name is stored on the request object. Subsequent calls to
pyramid.i18n.get_locale_name() will return the stored locale
name without invoking the locale negotiator. To avoid this
caching, you can use the pyramid.i18n.negotiate_locale_name()
function:

	1
2
3
4

	from pyramid.i18n import negotiate_locale_name

def aview(request):
 locale_name = negotiate_locale_name(request)

You can also obtain the locale name related to a request using the
locale_name attribute of a localizer.

	1
2
3
4
5

	from pyramid.i18n import get_localizer

def aview(request):
 localizer = get_localizer(request)
 locale_name = localizer.locale_name

Obtaining the locale name as an attribute of a localizer is equivalent
to obtaining a locale name by calling the
pyramid.i18n.get_locale_name() function.

Performing Date Formatting and Currency Formatting

Pyramid does not itself perform date and currency formatting
for different locales. However, Babel can help you do this
via the babel.core.Locale class. The Babel documentation
for this class [http://babel.edgewall.org/wiki/ApiDocs/babel.core#babel.core:Locale]
provides minimal information about how to perform date and currency
related locale operations. See Installing Babel for
information about how to install Babel.

The babel.core.Locale class requires a locale name as
an argument to its constructor. You can use Pyramid APIs to
obtain the locale name for a request to pass to the
babel.core.Locale constructor; see
Obtaining the Locale Name for a Request. For example:

	1
2
3
4
5
6

	from babel.core import Locale
from pyramid.i18n import get_locale_name

def aview(request):
 locale_name = get_locale_name(request)
 locale = Locale(locale_name)

Chameleon Template Support for Translation Strings

When a translation string is used as the subject of textual
rendering by a Chameleon template renderer, it will
automatically be translated to the requesting user’s language if a
suitable translation exists. This is true of both the ZPT and text
variants of the Chameleon template renderers.

For example, in a Chameleon ZPT template, the translation string
represented by “some_translation_string” in each example below will go
through translation before being rendered:

	1

	

	1

	

	1

	${some_translation_string}

	1

	<a tal:attributes="href some_translation_string">Click here

The features represented by attributes of the i18n namespace of
Chameleon will also consult the Pyramid translations.
See
http://chameleon.repoze.org/docs/latest/i18n.html#the-i18n-namespace.

Note

Unlike when Chameleon is used outside of Pyramid, when it
is used within Pyramid, it does not support use of the
zope.i18n translation framework. Applications which use
Pyramid should use the features documented in this
chapter rather than zope.i18n.

Third party Pyramid template renderers might not provide
this support out of the box and may need special code to do an
equivalent. For those, you can always use the more manual translation
facility described in Performing a Translation.

Localization-Related Deployment Settings

A Pyramid application will have a default_locale_name
setting. This value represents the default locale name used
when the locale negotiator returns None. Pass it to the
pyramid.config.Configurator constructor at startup
time:

	1
2

	from pyramid.config import Configurator
config = Configurator(settings={'default_locale_name':'de'})

You may alternately supply a default_locale_name via an
application’s Paster .ini file:

	1
2
3
4
5
6

	[app:main]
use = egg:MyProject#app
reload_templates = true
debug_authorization = false
debug_notfound = false
default_locale_name = de

If this value is not supplied via the Configurator constructor or via
a Paste config file, it will default to en.

If this setting is supplied within the Pyramid application
.ini file, it will be available as a settings key:

	1
2
3

	from pyramid.threadlocal import get_current_registry
settings = get_current_registry().settings
default_locale_name = settings['default_locale_name']

“Detecting” Available Languages

Other systems provide an API that returns the set of “available
languages” as indicated by the union of all languages in all
translation directories on disk at the time of the call to the API.

It is by design that Pyramid doesn’t supply such an API.
Instead, the application itself is responsible for knowing the “available
languages”. The rationale is this: any particular application
deployment must always know which languages it should be translatable
to anyway, regardless of which translation files are on disk.

Here’s why: it’s not a given that because translations exist in a
particular language within the registered set of translation
directories that this particular deployment wants to allow translation
to that language. For example, some translations may exist but they
may be incomplete or incorrect. Or there may be translations to a
language but not for all translation domains.

Any nontrivial application deployment will always need to be able to
selectively choose to allow only some languages even if that set of
languages is smaller than all those detected within registered
translation directories. The easiest way to allow for this is to make
the application entirely responsible for knowing which languages are
allowed to be translated to instead of relying on the framework to
divine this information from translation directory file info.

You can set up a system to allow a deployer to select available
languages based on convention by using the pyramid.settings
mechanism:

Allow a deployer to modify your application’s PasteDeploy .ini file:

	1
2
3
4

	[app:main]
use = egg:MyProject#app
...
available_languages = fr de en ru

Then as a part of the code of a custom locale negotiator:

	1
2
3

	from pyramid.threadlocal import get_current_registry
settings = get_current_registry().settings
languages = settings['available_languages'].split()

This is only a suggestion. You can create your own “available
languages” configuration scheme as necessary.

Activating Translation

By default, a Pyramid application performs no translation.
To turn translation on, you must:

	add at least one translation directory to your application.

	ensure that your application sets the locale name correctly.

Adding a Translation Directory

gettext is the underlying machinery behind the
Pyramid translation machinery. A translation directory is a
directory organized to be useful to gettext. A translation
directory usually includes a listing of language directories, each of
which itself includes an LC_MESSAGES directory. Each
LC_MESSAGES directory should contain one or more .mo files.
Each .mo file represents a message catalog, which is used
to provide translations to your application.

Adding a translation directory registers all of its
constituent message catalog files (all of the .mo files
found within all LC_MESSAGES directories within each locale
directory in the translation directory) within your Pyramid
application to be available to use for translation services.

You can add a translation directory imperatively by using the
pyramid.config.Configurator.add_translation_dirs() during
application startup. For example:

	1
2
3
4
5
6

	from pyramid.config import Configurator
config.begin()
config.add_translation_dirs('my.application:locale/',
 'another.application:locale/')
...
config.end()

A message catalog in a translation directory added via
pyramid.config.Configurator.add_translation_dirs()
will be merged into translations from a message catalog added earlier
if both translation directories contain translations for the same
locale and translation domain.

Note

You can also add a translation directory via ZCML. See
Adding a Translation Directory via ZCML

Setting the Locale

When the default locale negotiator (see
The Default Locale Negotiator) is in use, you can inform
Pyramid of the current locale name by doing any of these
things before any translations need to be performed:

	Set the _LOCALE_ attribute of the request to a valid locale name
(usually directly within view code). E.g. request._LOCALE_ =
'de'.

	Ensure that a valid locale name value is in the request.params
dictionary under the key named _LOCALE_. This is usually the
result of passing a _LOCALE_ value in the query string or in the
body of a form post associated with a request. For example,
visiting http://my.application?_LOCALE_=de.

	Ensure that a valid locale name value is in the request.cookies
dictionary under the key named _LOCALE_. This is usually the
result of setting a _LOCALE_ cookie in a prior response,
e.g. response.set_cookie('_LOCALE_', 'de').

Note

If this locale negotiation scheme is inappropriate for a particular
application, you can configure a custom locale negotiator
function into that application as required. See
Using a Custom Locale Negotiator.

Locale Negotiators

A locale negotiator informs the operation of a
localizer by telling it what locale name is related to
a particular request. A locale negotiator is a bit of code which
accepts a request and which returns a locale name. It is
consulted when pyramid.i18n.Localizer.translate() or
pyramid.i18n.Localizer.pluralize() is invoked. It is also
consulted when pyramid.i18n.get_locale_name() or
pyramid.i18n.negotiate_locale_name() is invoked.

The Default Locale Negotiator

Most applications can make use of the default locale negotiator, which
requires no additional coding or configuration.

The default locale negotiator implementation named
pyramid.i18n.default_locale_negotiator uses the following
set of steps to dermine the locale name.

	First, the negotiator looks for the _LOCALE_ attribute of the
request object (possibly set directly by view code or by a listener
for an event).

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

	If no locale can be found via the request, it falls back to using
the default locale name (see
Localization-Related Deployment Settings).

	Finally, if the default locale name is not explicitly set, it uses
the locale name en.

Using a Custom Locale Negotiator

Locale negotiation is sometimes policy-laden and complex. If the
(simple) default locale negotiation scheme described in
Activating Translation is inappropriate for your application,
you may create and a special locale negotiator. Subsequently
you may override the default locale negotiator by adding your newly
created locale negotiator to your application’s configuration.

A locale negotiator is simply a callable which
accepts a request and returns a single locale name or None
if no locale can be determined.

Here’s an implementation of a simple locale negotiator:

	1
2
3

	 def my_locale_negotiator(request):
 locale_name = request.params.get('my_locale')
 return locale_name

If a locale negotiator returns None, it signifies to
Pyramid that the default application locale name should be
used.

You may add your newly created locale negotiator to your application’s
configuration by passing an object which can act as the negotiator (or a
dotted Python name referring to the object) as the
locale_negotiator argument of the
pyramid.config.Configurator instance during application
startup. For example:

	1
2

	from pyramid.config import Configurator
config = Configurator(locale_negotiator=my_locale_negotiator)

Alternately, use the
pyramid.config.Configurator.set_locale_negotiator()
method.

For example:

	1
2
3
4
5

	from pyramid.config import Configurator
config = Configurator()
config.begin()
config.set_locale_negotiator(my_locale_negotiator)
config.end()

Note

You can also add a custom locale negotiator via ZCML. See
Adding a Custom Locale Negotiator via ZCML

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Virtual Hosting

“Virtual hosting” is, loosely, the act of serving a Pyramid
application or a portion of a Pyramid application under a
URL space that it does not “naturally” inhabit.

Pyramid provides facilities for serving an application under
a URL “prefix”, as well as serving a portion of a traversal
based application under a root URL.

Hosting an Application Under a URL Prefix

Pyramid supports a common form of virtual hosting whereby you
can host a Pyramid application as a “subset” of some other site
(e.g. under http://example.com/mypyramidapplication/ as opposed to
under http://example.com/).

If you use a “pure Python” environment, this functionality is provided
by Paste’s urlmap [http://pythonpaste.org/modules/urlmap.html]
“composite” WSGI application. Alternately, you can use
mod_wsgi to serve your application, which handles this virtual
hosting translation for you “under the hood”.

If you use the urlmap composite application “in front” of a
Pyramid application or if you use mod_wsgi to serve
up a Pyramid application, nothing special needs to be done
within the application for URLs to be generated that contain a
prefix. paste.urlmap and mod_wsgi manipulate the
WSGI environment in such a way that the PATH_INFO and
SCRIPT_NAME variables are correct for some given prefix.

Here’s an example of a PasteDeploy configuration snippet that includes
a urlmap composite.

	1
2
3
4
5
6

	[app:mypyramidapp]
use = egg:mypyramidapp#app

[composite:main]
use = egg:Paste#urlmap
/pyramidapp = mypyramidapp

This “roots” the Pyramid application at the prefix
/pyramidapp and serves up the composite as the “main” application
in the file.

Note

If you’re using an Apache server to proxy to a Paste
urlmap composite, you may have to use the ProxyPreserveHost [http://httpd.apache.org/docs/2.2/mod/mod_proxy.html#proxypreservehost]
directive to pass the original HTTP_HOST header along to the
application, so URLs get generated properly. As of this writing
the urlmap composite does not seem to respect the
HTTP_X_FORWARDED_HOST parameter, which will contain the
original host header even if HTTP_HOST is incorrect.

If you use mod_wsgi, you do not need to use a composite
application in your .ini file. The WSGIScriptAlias
configuration setting in a mod_wsgi configuration does the
work for you:

	1

	WSGIScriptAlias /pyramidapp /Users/chrism/projects/modwsgi/env/pyramid.wsgi

In the above configuration, we root a Pyramid application at
/pyramidapp within the Apache configuration.

Virtual Root Support

Pyramid also supports “virtual roots”, which can be used in
traversal -based (but not URL dispatch -based)
applications.

Virtual root support is useful when you’d like to host some resource in a
Pyramid resource tree as an application under a URL pathname that does
not include the resource path itself. For example, you might want to serve the
object at the traversal path /cms as an application reachable via
http://example.com/ (as opposed to http://example.com/cms).

To specify a virtual root, cause an environment variable to be inserted into
the WSGI environ named HTTP_X_VHM_ROOT with a value that is the absolute
pathname to the resource object in the resource tree that should behave as
the “root” resource. As a result, the traversal machinery will respect this
value during traversal (prepending it to the PATH_INFO before traversal
starts), and the pyramid.url.resource_url() API will generate the
“correct” virtually-rooted URLs.

An example of an Apache mod_proxy configuration that will host the
/cms subobject as http://www.example.com/ using this facility
is below:

	1
2
3
4
5
6
7
8
9

	 NameVirtualHost *:80

 <VirtualHost *:80>
 ServerName www.example.com
 RewriteEngine On
 RewriteRule ^/(.*) http://127.0.0.1:6543/$1 [L,P]
 ProxyPreserveHost on
 RequestHeader add X-Vhm-Root /cms
 </VirtualHost>

Note

Use of the RequestHeader directive requires that the
Apache mod_headers [http://httpd.apache.org/docs/2.2/mod/mod_headers.html] module be
available in the Apache environment you’re using.

For a Pyramid application running under mod_wsgi,
the same can be achieved using SetEnv:

	1
2
3

	 <Location />
 SetEnv HTTP_X_VHM_ROOT /cms
 </Location>

Setting a virtual root has no effect when using an application based
on URL dispatch.

Further Documentation and Examples

The API documentation in pyramid.traversal documents a
pyramid.traversal.virtual_root() API. When called, it
returns the virtual root object (or the physical root object if no
virtual root has been specified).

Running a Pyramid Application under mod_wsgi has detailed information about using
mod_wsgi to serve Pyramid applications.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Using Events

An event is an object broadcast by the Pyramid framework
at interesting points during the lifetime of an application. You
don’t need to use events in order to create most Pyramid
applications, but they can be useful when you want to perform slightly
advanced operations. For example, subscribing to an event can allow
you to run some code as the result of every new request.

Events in Pyramid are always broadcast by the framework.
However, they only become useful when you register a subscriber. A
subscriber is a function that accepts a single argument named event:

	1
2

	def mysubscriber(event):
 print event

The above is a subscriber that simply prints the event to the console
when it’s called.

The mere existence of a subscriber function, however, is not sufficient to
arrange for it to be called. To arrange for the subscriber to be called,
you’ll need to use the
pyramid.config.Configurator.add_subscriber() method or you’ll
need to use the pyramid.events.subscriber() decorator to decorate a
function found via a scan.

Configuring an Event Listener Imperatively

You can imperatively configure a subscriber function to be called
for some event type via the
pyramid.config.Configurator.add_subscriber()
method (see also Configurator):

	1
2
3
4
5
6
7
8

	from pyramid.events import NewRequest

from subscribers import mysubscriber

"config" below is assumed to be an instance of a
pyramid.config.Configurator object

config.add_subscriber(mysubscriber, NewRequest)

The first argument to
pyramid.config.Configurator.add_subscriber() is the
subscriber function (or a dotted Python name which refers
to a subscriber callable); the second argument is the event type.

Configuring an Event Listener Using a Decorator

You can configure a subscriber function to be called for some event
type via the pyramid.events.subscriber() function.

	1
2
3
4
5
6

	from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):
 event.request.foo = 1

When the pyramid.subscriber() decorator is used a
scan must be performed against the package containing the
decorated function for the decorator to have any effect. See
pyramid.subscriber() for more information.

Note

You can also configure an event listener via ZCML. See
Configuring an Event Listener via ZCML.

Either of the above registration examples implies that every time the
Pyramid framework emits an event object that supplies an
pyramid.events.NewRequest interface, the mysubscriber function
will be called with an event object.

As you can see, a subscription is made in terms of a class (such as
pyramid.events.NewResponse). The event object sent to a subscriber
will always be an object that possesses an interface. For
pyramid.events.NewResponse, that interface is
pyramid.interfaces.INewResponse. The interface documentation
provides information about available attributes and methods of the event
objects.

The return value of a subscriber function is ignored. Subscribers to
the same event type are not guaranteed to be called in any particular
order relative to each other.

All the concrete Pyramid event types are documented in the
pyramid.events API documentation.

An Example

If you create event listener functions in a subscribers.py file in
your application like so:

	1
2
3
4
5

	def handle_new_request(event):
 print 'request', event.request

def handle_new_response(event):
 print 'response', event.response

You may configure these functions to be called at the appropriate
times by adding the following code to your application’s
configuration startup:

	1
2
3
4
5
6

	# config is an instance of pyramid.config.Configurator

config.add_subscriber('myproject.subscribers.handle_new_request',
 'pyramid.events.NewRequest')
config.add_subscriber('myproject.subscribers.handle_new_response',
 'pyramid.events.NewResponse')

Either mechanism causes the functions in subscribers.py to be
registered as event subscribers. Under this configuration, when the
application is run, each time a new request or response is detected, a
message will be printed to the console.

Each of our subscriber functions accepts an event object and
prints an attribute of the event object. This begs the question: how
can we know which attributes a particular event has?

We know that pyramid.events.NewRequest event objects have a
request attribute, which is a request object, because the
interface defined at pyramid.interfaces.INewRequest says it must.
Likewise, we know that pyramid.interfaces.NewResponse events have a
response attribute, which is a response object constructed by your
application, because the interface defined at
pyramid.interfaces.INewResponse says it must
(pyramid.events.NewResponse objects also have a request).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Environment Variables and .ini File Settings

Pyramid behavior can be configured through a combination of
operating system environment variables and .ini configuration file
application section settings. The meaning of the environment
variables and the configuration file settings overlap.

Note

Where a configuration file setting exists with the same
meaning as an environment variable, and both are present at
application startup time, the environment variable setting
takes precedence.

The term “configuration file setting name” refers to a key in the
.ini configuration for your application. The configuration file
setting names documented in this chapter are reserved for
Pyramid use. You should not use them to indicate
application-specific configuration settings.

Reloading Templates

When this value is true, reload templates without a restart, so you can see
changes to templates take effect immediately during development. This flag
is meaningful to Chameleon and Mako templates, as well as most third-party
template rendering extensions.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_TEMPLATES
	reload_templates

Reloading Assets

Don’t cache any asset file data when this value is true. See
also Overriding Assets.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_ASSETS
	reload_assets

Note

For backwards compatibility purposes, the following aliases can be
used for configurating asset reloading: PYRAMID_RELOAD_RESOURCES (envvar)
and reload_resources (config file).

Debugging Authorization

Print view authorization failure and success information to stderr
when this value is true. See also Debugging View Authorization Failures.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_AUTHORIZATION
	debug_authorization

Debugging Not Found Errors

Print view-related NotFound debug messages to stderr
when this value is true. See also NotFound Errors.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_NOTFOUND
	debug_notfound

Debugging Route Matching

Print debugging messages related to url dispatch route matching when
this value is true. See also Debugging Route Matching.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_ROUTEMATCH
	debug_routematch

Debugging All

Turns on all debug* settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEBUG_ALL
	debug_all

Reloading All

Turns on all reload* settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_RELOAD_ALL
	reload_all

Default Locale Name

The value supplied here is used as the default locale name when a
locale negotiator is not registered. See also
Localization-Related Deployment Settings.

	Environment Variable Name
	Config File Setting Name

	PYRAMID_DEFAULT_LOCALE_NAME
	default_locale_name

Mako Template Render Settings

Mako derives additional settings to configure its template renderer that
should be set when using it. Many of these settings are optional and only need
to be set if they should be different from the default. The Mako Template
Renderer uses a subclass of Mako’s template lookup [http://www.makotemplates.org/docs/usage.html#usage_lookup] and accepts
several arguments to configure it.

Mako Directories

The value(s) supplied here are passed in as the template directories. They
should be in asset specification format, for example:
my.package:templates.

	Config File Setting Name

	mako.directories

Mako Module Directory

The value supplied here tells Mako where to store compiled Mako templates. If
omitted, compiled templates will be stored in memory. This value should be an
absolute path, for example: %(here)s/data/templates would use a directory
called data/templates in the same parent directory as the INI file.

	Config File Setting Name

	mako.module_directory

Mako Input Encoding

The encoding that Mako templates are assumed to have. By default this is set
to utf-8. If you wish to use a different template encoding, this value
should be changed accordingly.

	Config File Setting Name

	mako.input_encoding

Mako Error Handler

Python callable which is called whenever Mako compile or runtime exceptions
occur. The callable is passed the current context as well as the exception. If
the callable returns True, the exception is considered to be handled, else it
is re-raised after the function completes. Is used to provide custom
error-rendering functions.

	Config File Setting Name

	mako.error_handler

Mako Default Filters

List of string filter names that will be applied to all Mako expressions.

	Config File Setting Name

	mako.default_filters

Mako Import

String list of Python statements, typically individual “import” lines, which
will be placed into the module level preamble of all generated Python modules.

	Config File Setting Name

	mako.imports

Mako Strict Undefined

true or false, representing the “strict undefined” behavior of Mako
(see Mako Context Variables [http://www.makotemplates.org/docs/runtime.html#context-variables]). By
default, this is false.

	Config File Setting Name

	mako.strict_undefined

Examples

Let’s presume your configuration file is named MyProject.ini, and
there is a section representing your application named [app:main]
within the file that represents your Pyramid application.
The configuration file settings documented in the above “Config File
Setting Name” column would go in the [app:main] section. Here’s
an example of such a section:

	1
2
3
4

	[app:main]
use = egg:MyProject#app
reload_templates = true
debug_authorization = true

You can also use environment variables to accomplish the same purpose
for settings documented as such. For example, you might start your
Pyramid application using the following command line:

$ PYRAMID_DEBUG_AUTHORIZATION=1 PYRAMID_RELOAD_TEMPLATES=1 \
 bin/paster serve MyProject.ini

If you started your application this way, your Pyramid
application would behave in the same manner as if you had placed the
respective settings in the [app:main] section of your
application’s .ini file.

If you want to turn all debug settings (every setting that starts
with debug_). on in one fell swoop, you can use
PYRAMID_DEBUG_ALL=1 as an environment variable setting or you may use
debug_all=true in the config file. Note that this does not affect
settings that do not start with debug_* such as
reload_templates.

If you want to turn all reload settings (every setting that starts
with reload_). on in one fell swoop, you can use
PYRAMID_RELOAD_ALL=1 as an environment variable setting or you may use
reload_all=true in the config file. Note that this does not
affect settings that do not start with reload_* such as
debug_notfound.

Understanding the Distinction Between reload_templates and reload_assets

The difference between reload_assets and reload_templates is a bit
subtle. Templates are themselves also treated by Pyramid as asset
files (along with other static files), so the distinction can be confusing.
It’s helpful to read Overriding Assets for some context
about assets in general.

When reload_templates is true, Pyramid takes advantage of the
underlying templating systems’ ability to check for file modifications to an
individual template file. When reload_templates is true but
reload_assets is not true, the template filename returned by the
pkg_resources package (used under the hood by asset resolution) is cached
by Pyramid on the first request. Subsequent requests for the same
template file will return a cached template filename. The underlying
templating system checks for modifications to this particular file for every
request. Setting reload_templates to True doesn’t affect performance
dramatically (although it should still not be used in production because it
has some effect).

However, when reload_assets is true, Pyramid will not cache the
template filename, meaning you can see the effect of changing the content of
an overridden asset directory for templates without restarting the server
after every change. Subsequent requests for the same template file may
return different filenames based on the current state of overridden asset
directories. Setting reload_assets to True affects performance
dramatically, slowing things down by an order of magnitude for each
template rendering. However, it’s convenient to enable when moving files
around in overridden asset directories. reload_assets makes the system
very slow when templates are in use. Never set reload_assets to
True on a production system.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Unit, Integration, and Functional Testing

Unit testing is, not surprisingly, the act of testing a “unit” in your
application. In this context, a “unit” is often a function or a method of a
class instance. The unit is also referred to as a “unit under test”.

The goal of a single unit test is to test only some permutation of the
“unit under test”. If you write a unit test that aims to verify the result
of a particular codepath through a Python function, you need only be
concerned about testing the code that lives in the function body itself.
If the function accepts a parameter that represents a complex application
“domain object” (such as a resource, a database connection, or an SMTP
server), the argument provided to this function during a unit test need not
be and likely should not be a “real” implementation object. For example,
although a particular function implementation may accept an argument that
represents an SMTP server object, and the function may call a method of this
object when the system is operating normally that would result in an email
being sent, a unit test of this codepath of the function does not need to
test that an email is actually sent. It just needs to make sure that the
function calls the method of the object provided as an argument that would
send an email if the argument happened to be the “real” implementation of an
SMTP server object.

An integration test, on the other hand, is a different form of testing in
which the interaction between two or more “units” is explicitly tested.
Integration tests verify that the components of your application work
together. You might make sure that an email was actually sent in an
integration test.

A functional test is a form of integration test in which the application is
run “literally”. You would have to make sure that an email was actually
sent in a functional test, because it tests your code end to end.

It is often considered best practice to write each type of tests for any
given codebase. Unit testing often provides the opportunity to obtain better
“coverage”: it’s usually possible to supply a unit under test with arguments
and/or an environment which causes all of its potential codepaths to be
executed. This is usually not as easy to do with a set of integration or
functional tests, but integration and functional testing provides a measure of
assurance that your “units” work together, as they will be expected to when
your application is run in production.

The suggested mechanism for unit and integration testing of a Pyramid
application is the Python unittest module. Although this module is
named unittest, it is actually capable of driving both unit and
integration tests. A good unittest tutorial is available within Dive
Into Python [http://diveintopython.org/unit_testing/index.html] by Mark
Pilgrim.

Pyramid provides a number of facilities that make unit, integration,
and functional tests easier to write. The facilities become particularly
useful when your code calls into Pyramid -related framework functions.

Test Set Up and Tear Down

Pyramid uses a “global” (actually thread local) data structure
to hold on to two items: the current request and the current
application registry. These data structures are available via the
pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry() functions, respectively.
See Thread Locals for information about these functions and the
data structures they return.

If your code uses these get_current_* functions or calls Pyramid
code which uses get_current_* functions, you will need to construct a
Configurator and call its begin method within the setUp
method of your unit test and call the same Configurator’s end method
within the tearDown method of your unit test.

We’ll also instruct the Configurator we use during testing to autocommit.
Normally when a Configurator is used by an application, it defers performing
any “real work” until its .commit method is called (often implicitly by
the pyramid.config.Configurator.make_wsgi_app() method). Passing
autocommit=True to the Configurator constructor causes the Configurator
to perform all actions implied by methods called on it immediately, which is
more convenient for unit-testing purposes than needing to call
pyramid.config.Configurator.commit() in each test.

The use of a Configurator and its begin and end methods allows you to
supply each unit test method in a test case with an environment that has an
isolated registry and an isolated request for the duration of a single test.
Here’s an example of using this feature:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import unittest
from pyramid.config import Configurator

class MyTest(unittest.TestCase):
 def setUp(self):
 self.config = Configurator(autocommit=True)
 self.config.begin()

 def tearDown(self):
 self.config.end()

The above will make sure that
pyramid.threadlocal.get_current_registry() will return the
application registry associated with the config Configurator
instance when pyramid.threadlocal.get_current_registry() is called in a
test case method attached to MyTest. Each test case method attached to
MyTest will use an isolated registry.

The pyramid.config.Configurator.begin() method accepts various
arguments that influence the code run during the test. See the
pyramid.config chapter for information about the API of a
Configurator, including its begin and end methods.

If you also want to make pyramid.get_current_request() return something
other than None during the course of a single test, you can pass a
request object into the pyramid.config.Configurator.begin()
method of the Configurator within the setUp method of your test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	import unittest
from pyramid.config import Configurator
from pyramid import testing

class MyTest(unittest.TestCase):
 def setUp(self):
 self.config = Configurator(autocommit=True)
 request = testing.DummyRequest()
 self.config.begin(request=request)

 def tearDown(self):
 self.config.end()

If you pass a request object into the begin method of the
configurator within your test case’s setUp, any test method attached to
the MyTest test case that directly or indirectly calls
pyramid.threadlocal.get_current_request() will receive the request you
passed into the begin method. Otherwise, during testing,
pyramid.threadlocal.get_current_request() will return None. We use
a “dummy” request implementation supplied by
pyramid.testing.DummyRequest because it’s easier to construct than a
“real” Pyramid request object.

What?

Thread local data structures are always a bit confusing, especially when
they’re used by frameworks. Sorry. So here’s a rule of thumb: if you don’t
know whether you’re calling code that uses the
pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions, or you don’t care
about any of this, but you still want to write test code, just always create
an autocommitting Configurator instance and call its begin method within
the setUp of a unit test, then subsequently call its end method in
the test’s tearDown. This won’t really hurt anything if the application
you’re testing does not call any get_current* function.

Using the Configurator and pyramid.testing APIs in Unit Tests

The Configurator API and the pyramid.testing module provide a number
of functions which can be used during unit testing. These functions make
configuration declaration calls to the current application
registry, but typically register a “stub” or “dummy” feature in place of the
“real” feature that the code would call if it was being run normally.

For example, let’s imagine you want to unit test a Pyramid view
function.

	1
2
3
4
5
6

	def view_fn(request):
 from pyramid.chameleon_zpt import render_template_to_response
 if 'say' in request.params:
 return render_template_to_response('templates/submitted.pt',
 say=request.params['say'])
 return render_template_to_response('templates/show.pt', say='Hello')

Without invoking any startup code or using the testing API, an attempt to run
this view function in a unit test will result in an error. When a
Pyramid application starts normally, it will populate a
application registry using configuration declaration calls
made against a Configurator (sometimes deferring to the application’s
configure.zcml ZCML file via load_zcml). But if this
application registry is not created and populated (e.g. with an
pyramid.config.Configurator.add_view() configuration
declaration or view declarations in ZCML), like when you invoke
application code via a unit test, Pyramid API functions will tend to
fail.

The testing API provided by Pyramid allows you to simulate various
application registry registrations for use under a unit testing framework
without needing to invoke the actual application configuration implied by its
run.py. For example, if you wanted to test the above view_fn
(assuming it lived in the package named my.package), you could write a
unittest.TestCase that used the testing API.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	import unittest
from pyramid.config import Configurator
from pyramid import testing

class MyTest(unittest.TestCase):
 def setUp(self):
 self.config = Configurator(autocommit=True)
 self.config.begin()

 def tearDown(self):
 self.config.end()

 def test_view_fn_not_submitted(self):
 from my.package import view_fn
 renderer = self.config.testing_add_renderer('templates/show.pt')
 request = testing.DummyRequest()
 response = view_fn(request)
 renderer.assert_(say='Hello')

 def test_view_fn_submitted(self):
 from my.package import view_fn
 renderer = self.config.testing_add_renderer(
 'templates/submitted.pt')
 request = testing.DummyRequest()
 request.params['say'] = 'Yo'
 response = view_fn(request)
 renderer.assert_(say='Yo')

In the above example, we create a MyTest test case that inherits from
unittest.TestCase. If it’s in our Pyramid application, it will
be found when setup.py test is run. It has two test methods.

The first test method, test_view_fn_not_submitted tests the view_fn
function in the case that no “form” values (represented by request.params)
have been submitted. Its first line registers a “dummy template renderer”
named templates/show.pt via the
pyramid.config.Configurator.testing_add_renderer() method; this method
returns a pyramid.testing.DummyTemplateRenderer instance which we
hang on to for later.

We then create a pyramid.testing.DummyRequest object which simulates
a WebOb request object API. A pyramid.testing.DummyRequest is a
request object that requires less setup than a “real” Pyramid request.
We call the function being tested with the manufactured request. When the
function is called, pyramid.chameleon_zpt.render_template_to_response()
will call the “dummy” template renderer object instead of the real template
renderer object. When the dummy renderer is called, it will set attributes
on itself corresponding to the non-path keyword arguments provided to the
pyramid.chameleon_zpt.render_template_to_response() function. We check
that the say parameter sent into the template rendering function was
Hello in this specific example. The assert_ method of the renderer
we’ve created will raise an AssertionError if the value passed to the
renderer as say does not equal Hello (any number of keyword arguments
are supported).

The second test method, named test_view_fn_submitted tests the alternate
case, where the say form value has already been set in the request and
performs a similar template registration and assertion. We assert at the end
of this that the renderer’s say attribute is Yo, as this is what is
expected of the view function in the branch it’s testing.

Note that the test calls the pyramid.config.Configurator.begin() method
in its setUp method and the end method of the same in its
tearDown method. If you use any of the
pyramid.config.Configurator APIs during testing, be sure to use this
pattern in your test case’s setUp and tearDown; these methods make
sure you’re using a “fresh” application registry per test run.

See the pyramid.testing chapter for the entire Pyramid -specific
testing API. This chapter describes APIs for registering a security policy,
registering resources at paths, registering event listeners, registering
views and view permissions, and classes representing “dummy” implementations
of a request and a resource.

See also the various methods of the Configurator documented in
pyramid.config that begin with the testing_ prefix.

Creating Integration Tests

In Pyramid, a unit test typically relies on “mock” or “dummy”
implementations to give the code under test only enough context to run.

“Integration testing” implies another sort of testing. In the context of a
Pyramid, integration test, the test logic tests the functionality of
some code and its integration with the rest of the Pyramid
framework.

In Pyramid applications that use ZCML, you can create an
integration test by loading its ZCML in the test’s setup code. This causes
the entire Pyramid environment to be set up and torn down as if your
application was running “for real”. This is a heavy-hammer way of making
sure that your tests have enough context to run properly, and it tests your
code’s integration with the rest of Pyramid.

Let’s demonstrate this by showing an integration test for a view. The below
test assumes that your application’s package name is myapp, and that
there is a views module in the app with a function with the name
my_view in it that returns the response ‘Welcome to this application’
after accessing some values that require a fully set up environment.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	import unittest

from pyramid.config import Configurator
from pyramid import testing

class ViewIntegrationTests(unittest.TestCase):
 def setUp(self):
 """ This sets up the application registry with the
 registrations your application declares in its configure.zcml
 (including dependent registrations for pyramid itself).
 """
 import myapp
 self.config = Configurator(package=myapp, autocommit=True)
 self.config.begin()
 self.config.load_zcml('myapp:configure.zcml')

 def tearDown(self):
 """ Clear out the application registry """
 self.config.end()

 def test_my_view(self):
 from myapp.views import my_view
 request = testing.DummyRequest()
 result = my_view(request)
 self.assertEqual(result.status, '200 OK')
 body = result.app_iter[0]
 self.failUnless('Welcome to' in body)
 self.assertEqual(len(result.headerlist), 2)
 self.assertEqual(result.headerlist[0],
 ('Content-Type', 'text/html; charset=UTF-8'))
 self.assertEqual(result.headerlist[1], ('Content-Length',
 str(len(body))))

Unless you cannot avoid it, you should prefer writing unit tests that use the
pyramid.config.Configurator API to set up the right “mock”
registrations rather than creating an integration test. Unit tests will run
faster (because they do less for each test) and the result of a unit test is
usually easier to make assertions about.

Creating Functional Tests

Functional tests test your literal application.

The below test assumes that your application’s package name is myapp, and
that there is view that returns an HTML body when the root URL is invoked.
It further assumes that you’ve added a tests_require dependency on the
WebTest package within your setup.py file. WebTest is a
functional testing package written by Ian Bicking.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	import unittest

class FunctionalTests(unittest.TestCase):
 def setUp(self):
 from myapp import main
 app = main({})
 from webtest import TestApp
 self.testapp = TestApp(app)

 def test_root(self):
 res = self.testapp.get('/', status=200)
 self.failUnless('Pyramid' in res.body)

When this test is run, each test creates a “real” WSGI application using the
main function in your myapp.__init__ module and uses WebTest
to wrap that WSGI application. It assigns the result to self.testapp.
In the test named test_root, we use the testapp’s get method to
invoke the root URL. We then assert that the returned HTML has the string
Pyramid in it.

See the WebTest documentation for further information about the
methods available to a webtest.TestApp instance.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Using Hooks

“Hooks” can be used to influence the behavior of the Pyramid
framework in various ways.

Changing the Not Found View

When Pyramid can’t map a URL to view code, it invokes a
not found view, which is a view callable. A default
notfound view exists. The default not found view can be overridden
through application configuration. This override can be done via
imperative configuration or ZCML.

The not found view callable is a view callable like any other.
The view configuration which causes it to be a “not found”
view consists only of naming the pyramid.exceptions.NotFound
class as the context of the view configuration.

Using Imperative Configuration

If your application uses imperative configuration, you can
replace the Not Found view by using the
pyramid.config.Configurator.add_view() method to
register an “exception view”:

	1
2
3

	from pyramid.exceptions import NotFound
from helloworld.views import notfound_view
config.add_view(notfound_view, context=NotFound)

Replace helloworld.views.notfound_view with a reference to the
Python view callable you want to use to represent the Not
Found view.

Using ZCML

If your application uses ZCML, you can replace the Not Found
view by placing something like the following ZCML in your
configure.zcml file.

	1
2
3
4

	<view
 view="helloworld.views.notfound_view"
 context="pyramid.exceptions.NotFound"
 />

Replace helloworld.views.notfound_view with the Python dotted name
to the notfound view you want to use.

Like any other view, the notfound view must accept at least a
request parameter, or both context and request. The
request is the current request representing the denied
action. The context (if used in the call signature) will be the
instance of the pyramid.exceptions.NotFound exception that
caused the view to be called.

Here’s some sample code that implements a minimal NotFound view
callable:

	1
2
3
4

	from pyramid.httpexceptions import HTTPNotFound

def notfound_view(request):
 return HTTPNotFound()

Note

When a NotFound view callable is invoked, it is passed a
request. The exception attribute of the request will
be an instance of the pyramid.exceptions.NotFound
exception that caused the not found view to be called. The value
of request.exception.args[0] will be a value explaining why the
not found error was raised. This message will be different when
the debug_notfound environment setting is true than it is when
it is false.

Warning

When a NotFound view callable accepts an argument list as
described in Alternate View Callable Argument/Calling Conventions, the context
passed as the first argument to the view callable will be the
pyramid.exceptions.NotFound exception instance. If available, the
resource context will still be available as request.context.

Changing the Forbidden View

When Pyramid can’t authorize execution of a view based on
the authorization policy in use, it invokes a forbidden
view. The default forbidden response has a 401 status code and is
very plain, but the view which generates it can be overridden as
necessary using either imperative configuration or
ZCML.

The forbidden view callable is a view callable like any other.
The view configuration which causes it to be a “not found”
view consists only of naming the pyramid.exceptions.Forbidden
class as the context of the view configuration.

Using Imperative Configuration

If your application uses imperative configuration, you can
replace the Forbidden view by using the
pyramid.config.Configurator.add_view() method to
register an “exception view”:

	1
2
3

	from helloworld.views import forbidden_view
from pyramid.exceptions import Forbidden
config.add_view(forbidden_view, context=Forbidden)

Replace helloworld.views.forbidden_view with a reference to the
Python view callable you want to use to represent the
Forbidden view.

Using ZCML

If your application uses ZCML, you can replace the
Forbidden view by placing something like the following ZCML in your
configure.zcml file.

	1
2
3
4

	<view
 view="helloworld.views.notfound_view"
 context="pyramid.exceptions.Forbidden"
 />

Replace helloworld.views.forbidden_view with the Python
dotted name to the forbidden view you want to use.

Like any other view, the forbidden view must accept at least a
request parameter, or both context and request. The
context (available as request.context if you’re using the
request-only view argument pattern) is the context found by the router
when the view invocation was denied. The request is the current
request representing the denied action.

Here’s some sample code that implements a minimal forbidden view:

	1
2
3
4
5

	from pyramid.views import view_config

@view_config(renderer='templates/login_form.pt')
def forbidden_view(request):
 return {}

Note

When a forbidden view callable is invoked, it is passed a
request. The exception attribute of the request will
be an instance of the pyramid.exceptions.Forbidden
exception that caused the forbidden view to be called. The value
of request.exception.args[0] will be a value explaining why the
forbidden was raised. This message will be different when the
debug_authorization environment setting is true than it is when
it is false.

Warning

the default forbidden view sends a response with a 401
Unauthorized status code for backwards compatibility reasons.
You can influence the status code of Forbidden responses by using
an alternate forbidden view. For example, it would make sense to
return a response with a 403 Forbidden status code.

Changing the Traverser

The default traversal algorithm that Pyramid uses is
explained in The Traversal Algorithm. Though it is rarely
necessary, this default algorithm can be swapped out selectively for a
different traversal pattern via configuration.

Use an adapter stanza in your application’s configure.zcml to
change the default traverser:

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.Traverser"
 provides="pyramid.interfaces.ITraverser"
 for="*"
 />

In the example above, myapp.traversal.Traverser is assumed to be
a class that implements the following interface:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	class Traverser(object):
 def __init__(self, root):
 """ Accept the root object returned from the root factory """

 def __call__(self, request):
 """ Return a dictionary with (at least) the keys ``root``,
 ``context``, ``view_name``, ``subpath``, ``traversed``,
 ``virtual_root``, and ``virtual_root_path``. These values are
 typically the result of a resource tree traversal. ``root``
 is the physical root object, ``context`` will be a resource
 object, ``view_name`` will be the view name used (a Unicode
 name), ``subpath`` will be a sequence of Unicode names that
 followed the view name but were not traversed, ``traversed``
 will be a sequence of Unicode names that were traversed
 (including the virtual root path, if any) ``virtual_root``
 will be a resource object representing the virtual root (or the
 physical root if traversal was not performed), and
 ``virtual_root_path`` will be a sequence representing the
 virtual root path (a sequence of Unicode names) or None if
 traversal was not performed.

 Extra keys for special purpose functionality can be added as
 necessary.

 All values returned in the dictionary will be made available
 as attributes of the ``request`` object.
 """

More than one traversal algorithm can be active at the same time. For
instance, if your root factory returns more than one type of
object conditionally, you could claim that an alternate traverser
adapter is for only one particular class or interface. When the
root factory returned an object that implemented that class or
interface, a custom traverser would be used. Otherwise, the default
traverser would be used. For example:

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.Traverser"
 provides="pyramid.interfaces.ITraverser"
 for="myapp.resources.MyRoot"
 />

If the above stanza was added to a configure.zcml file,
Pyramid would use the myapp.traversal.Traverser only
when the application root factory returned an instance of the
myapp.resources.MyRoot object. Otherwise it would use the default
Pyramid traverser to do traversal.

Changing How pyramid.url.resource_url Generates a URL

When you add a traverser as described in Changing the Traverser, it’s
often convenient to continue to use the pyramid.url.resource_url() API.
However, since the way traversal is done will have been modified, the URLs it
generates by default may be incorrect.

If you’ve added a traverser, you can change how
pyramid.url.resource_url() generates a URL for a specific type of
resource by adding an adapter stanza for
pyramid.interfaces.IContextURL to your application’s
configure.zcml:

	1
2
3
4
5

	 <adapter
 factory="myapp.traversal.URLGenerator"
 provides="pyramid.interfaces.IContextURL"
 for="myapp.resources.MyRoot *"
 />

In the above example, the myapp.traversal.URLGenerator class will
be used to provide services to pyramid.url.resource_url() any
time the context passed to resource_url is of class
myapp.resources.MyRoot. The asterisk following represents the type
of interface that must be possessed by the request (in this
case, any interface, represented by asterisk).

The API that must be implemented by a class that provides
pyramid.interfaces.IContextURL is as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from zope.interface import Interface

class IContextURL(Interface):
 """ An adapter which deals with URLs related to a context.
 """
 def __init__(self, context, request):
 """ Accept the context and request """

 def virtual_root(self):
 """ Return the virtual root object related to a request and the
 current context"""

 def __call__(self):
 """ Return a URL that points to the context """

The default context URL generator is available for perusal as the
class pyramid.traversal.TraversalContextURL in the
traversal module [http://github.com/Pylons/pyramid/blob/master/pyramid/traversal.py] of
the Pylons GitHub Pyramid repository.

Changing the Request Factory

Whenever Pyramid handles a WSGI request, it creates
a request object based on the WSGI environment it has been
passed. By default, an instance of the
pyramid.request.Request class is created to represent the
request object.

The class (aka “factory”) that Pyramid uses to create a
request object instance can be changed by passing a
request_factory argument to the constructor of the
configurator. This argument can be either a callable or a
dotted Python name representing a callable.

	1
2
3
4
5
6

	from pyramid.request import Request

class MyRequest(Request):
 pass

config = Configurator(request_factory=MyRequest)

The same MyRequest class can alternately be registered via ZCML as
a request factory through the use of the ZCML utility directive.
In the below, we assume it lives in a package named
mypackage.mymodule.

	1
2
3
4

	<utility
 component="mypackage.mymodule.MyRequest"
 provides="pyramid.interfaces.IRequestFactory"
 />

Lastly, if you’re doing imperative configuration, and you’d rather do
it after you’ve already constructed a configurator it can also
be registered via the
pyramid.config.Configurator.set_request_factory()
method:

	1
2
3
4
5
6
7
8

	from pyramid.config import Configurator
from pyramid.request import Request

class MyRequest(Request):
 pass

config = Configurator()
config.set_request_factory(MyRequest)

Adding Renderer Globals

Whenever Pyramid handles a request to perform a rendering
(after a view with a renderer= configuration attribute is invoked,
or when the any of the methods beginning with render within the
pyramid.renderers module are called), renderer globals can
be injected into the system values sent to the renderer. By
default, no renderer globals are injected, and the “bare” system
values (such as request, context, and renderer_name) are
the only values present in the system dictionary passed to every
renderer.

A callback that Pyramid will call every time a renderer is
invoked can be added by passing a renderer_globals_factory
argument to the constructor of the configurator. This
callback can either be a callable object or a dotted Python
name representing such a callable.

	1
2
3
4
5

	def renderer_globals_factory(system):
 return {'a':1}

config = Configurator(
 renderer_globals_factory=renderer_globals_factory)

Such a callback must accept a single positional argument (notionally
named system) which will contain the original system values. It
must return a dictionary of values that will be merged into the system
dictionary. See System Values Used During Rendering for discription of the
values present in the system dictionary.

A renderer globals factory can alternately be registered via ZCML as a
through the use of the ZCML utility directive. In the below, we
assume a renderers_globals_factory function lives in a package
named mypackage.mymodule.

	1
2
3
4

	<utility
 component="mypackage.mymodule.renderer_globals_factory"
 provides="pyramid.interfaces.IRendererGlobalsFactory"
 />

Lastly, if you’re doing imperative configuration, and you’d rather do
it after you’ve already constructed a configurator it can also
be registered via the
pyramid.config.Configurator.set_renderer_globals_factory()
method:

	1
2
3
4
5
6
7

	from pyramid.config import Configurator

def renderer_globals_factory(system):
 return {'a':1}

config = Configurator()
config.set_renderer_globals_factory(renderer_globals_factory)

Another mechanism which allows event subscribers to add renderer global values
exists in Using The Before Render Event.

Using The Before Render Event

Subscribers to the pyramid.events.BeforeRender event may introspect
the and modify the set of renderer globals before they are passed to
a renderer. This event object iself has a dictionary-like interface
that can be used for this purpose. For example:

	1
2
3
4
5
6

	 from pyramid.events import subscriber
 from pyramid.events import BeforeRender

 @subscriber(BeforeRender)
 def add_global(event):
 event['mykey'] = 'foo'

An object of this type is sent as an event just before a renderer is
invoked (but after the application-level renderer globals factory added via
pyramid.config.Configurator.set_renderer_globals_factory, if
any, has injected its own keys into the renderer globals dictionary).

If a subscriber attempts to add a key that already exist in the renderer
globals dictionary, a KeyError is raised. This limitation is enforced
because event subscribers do not possess any relative ordering. The set of
keys added to the renderer globals dictionary by all
pyramid.events.BeforeRender subscribers and renderer globals
factories must be unique.

See the API documentation for the pyramid.events.BeforeRender event
interface at pyramid.interfaces.IBeforeRender.

Another mechanism which allows event subscribers more control when adding
renderer global values exists in Adding Renderer Globals.

Using Response Callbacks

Unlike many other web frameworks, Pyramid does not eagerly
create a global response object. Adding a response callback
allows an application to register an action to be performed against a
response object once it is created, usually in order to mutate it.

The pyramid.request.Request.add_response_callback() method is
used to register a response callback.

A response callback is a callable which accepts two positional
parameters: request and response. For example:

	1
2
3
4
5

	def cache_callback(request, response):
 """Set the cache_control max_age for the response"""
 if request.exception is not None:
 response.cache_control.max_age = 360
request.add_response_callback(cache_callback)

No response callback is called if an unhandled exception happens in
application code, or if the response object returned by a view
callable is invalid. Response callbacks are, however, invoked when
a exception view is rendered successfully: in such a case, the
request.exception attribute of the request when it enters a
response callback will be an exception object instead of its default
value of None.

Response callbacks are called in the order they’re added
(first-to-most-recently-added). All response callbacks are called after
the pyramid.events.NewResponse event is sent. Errors raised by
response callbacks are not handled specially. They will be propagated to the
caller of the Pyramid router application.

A response callback has a lifetime of a single request. If you want a
response callback to happen as the result of every request, you must
re-register the callback into every new request (perhaps within a subscriber
of a pyramid.events.NewRequest event).

Using Finished Callbacks

A finished callback is a function that will be called
unconditionally by the Pyramid router at the very
end of request processing. A finished callback can be used to perform
an action at the end of a request unconditionally.

The pyramid.request.Request.add_finished_callback() method is
used to register a finished callback.

A finished callback is a callable which accepts a single positional
parameter: request. For example:

	1
2
3
4
5
6
7
8
9

	import transaction

def commit_callback(request):
 '''commit or abort the transaction associated with request'''
 if request.exception is not None:
 transaction.abort()
 else:
 transaction.commit()
request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they’re added (first- to
most-recently- added). Finished callbacks (unlike a response
callback) are always called, even if an exception happens in
application code that prevents a response from being generated.

The set of finished callbacks associated with a request are called
very late in the processing of that request; they are essentially
the very last thing called by the router before a request
“ends”. They are called after response processing has already occurred
in a top-level finally: block within the router request processing
code. As a result, mutations performed to the request provided to
a finished callback will have no meaningful effect, because response
processing will have already occurred, and the request’s scope will
expire almost immediately after all finished callbacks have been
processed.

It is often necessary to tell whether an exception occurred within
view callable code from within a finished callback: in such a
case, the request.exception attribute of the request when it
enters a response callback will be an exception object instead of its
default value of None.

Errors raised by finished callbacks are not handled specially. They
will be propagated to the caller of the Pyramid router
application.

A finished callback has a lifetime of a single request. If you want a
finished callback to happen as the result of every request, you must
re-register the callback into every new request (perhaps within a subscriber
of a pyramid.events.NewRequest event).

Registering Configuration Decorators

Decorators such as pyramid.view.view_config don’t change the
behavior of the functions or classes they’re decorating. Instead,
when a scan is performed, a modified version of the function
or class is registered with Pyramid.

You may wish to have your own decorators that offer such
behaviour. This is possible by using the Venusian package in
the same way that it is used by Pyramid.

By way of example, let’s suppose you want to write a decorator that
registers the function it wraps with a Zope Component
Architecture “utility” within the application registry
provided by Pyramid. The application registry and the
utility inside the registry is likely only to be available once your
application’s configuration is at least partially completed. A normal
decorator would fail as it would be executed before the configuration
had even begun.

However, using Venusian, the decorator could be written as
follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	import venusian
from pyramid.threadlocal import get_current_registry
from mypackage.interfaces import IMyUtility

class registerFunction(object):

 def __init__(self, path):
 self.path = path

 def register(self, scanner, name, wrapped):
 registry = get_current_registry()
 registry.getUtility(IMyUtility).register(
 self.path, wrapped
)

 def __call__(self, wrapped):
 venusian.attach(wrapped, self.register)
 return wrapped

This decorator could then be used to register functions throughout
your code:

	1
2
3

	@registerFunction('/some/path')
def my_function():
 do_stuff()

However, the utility would only be looked up when a scan was
performed, enabling you to set up the utility in advance:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from paste.httpserver import serve
from pyramid.config import Configurator

class UtilityImplementation:

 implements(ISomething)

 def __init__(self):
 self.registrations = {}

 def register(self,path,callable_):
 self.registrations[path]=callable_

if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.registry.registerUtility(UtilityImplementation())
 config.scan()
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

For full details, please read the Venusian documentation [http://docs.repoze.org/venusian].

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Declarative Configuration

The mode of configuration most comprehensively detailed by examples in
narrative chapters in this book is “imperative” configuration. This is the
configuration mode in which a developer cedes the least amount of control to
the framework; it’s “imperative” because you express the configuration
directly in Python code, and you have the full power of Python at your
disposal as you issue configuration statements. However, another mode of
configuration exists within Pyramid, which often provides better
extensibility and configuration conflict detection.

A complete listing of ZCML directives is available within
ZCML Directives. This chapter provides an overview of how you might
get started with ZCML and highlights some common tasks performed when you use
ZCML. You can get a better understanding of when it’s appropriate to use
ZCML from Extending An Existing Pyramid Application.

Declarative Configuration

A Pyramid application can be configured “declaratively”, if so
desired. Declarative configuration relies on declarations made external to
the code in a configuration file format named ZCML (Zope
Configuration Markup Language), an XML dialect.

A Pyramid application configured declaratively requires not
one, but two files: a Python file and a ZCML file.

In a file named helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from paste.httpserver import serve
from pyramid.response import Response
from pyramid.config import Configurator

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In a file named configure.zcml in the same directory as the
previously created helloworld.py:

	1
2
3
4
5
6
7
8
9

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <view
 view="helloworld.hello_world"
 />

</configure>

This pair of files forms an application functionally equivalent to the
application we created earlier in Imperative Configuration.
Let’s examine the differences between that code listing and the code
above.

In Imperative Configuration, we had the following lines within
the if __name__ == '__main__' section of helloworld.py:

	1
2
3
4
5
6
7

	if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.add_view(hello_world)
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In our “declarative” code, we’ve removed the call to add_view and
replaced it with a call to the
pyramid.config.Configurator.load_zcml() method so that
it now reads as:

	1
2
3
4
5
6
7

	if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Everything else is much the same.

The config.load_zcml('configure.zcml') line tells the configurator
to load configuration declarations from the file named
configure.zcml which sits next to helloworld.py on the
filesystem. Let’s take a look at that configure.zcml file again:

	1
2
3
4
5
6
7
8
9

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <view
 view="helloworld.hello_world"
 />

</configure>

Note that this file contains some XML, and that the XML contains a
<view> configuration declaration tag that references a
dotted Python name. This dotted name refers to the
hello_world function that lives in our helloworld Python
module.

This <view> declaration tag performs the same function as the
add_view method that was employed within
Imperative Configuration. In fact, the <view> tag is
effectively a “macro” which calls the
pyramid.config.Configurator.add_view() method on your
behalf.

The <view> tag is an example of a Pyramid declaration
tag. Other such tags include <route> and <scan>. Each of
these tags is effectively a “macro” which calls methods of a
pyramid.config.Configurator object on your behalf.

Essentially, using a ZCML file and loading it from the
filesystem allows us to put our configuration statements within this
XML file rather as declarations, rather than representing them as
method calls to a Configurator object. Otherwise, declarative
and imperative configuration are functionally equivalent.

Using declarative configuration has a number of benefits, the primary
benefit being that applications configured declaratively can be
overridden and extended by third parties without requiring the
third party to change application code. If you want to build a
framework or an extensible application, using declarative
configuration is a good idea.

Declarative configuration has an obvious downside: you can’t use
plain-old-Python syntax you probably already know and understand to
configure your application; instead you need to use ZCML.

ZCML Conflict Detection

A minor additional feature of ZCML is conflict detection. If you
define two declaration tags within the same ZCML file which logically
“collide”, an exception will be raised, and the application will not
start. For example, the following ZCML file has two conflicting
<view> tags:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 <configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <view
 view="helloworld.hello_world"
 />

 <view
 view="helloworld.hello_world"
 />

 </configure>

If you try to use this ZCML file as the source of ZCML for an
application, an error will be raised when you attempt to start the
application. This error will contain information about which tags
might have conflicted.

Hello World, Goodbye World (Declarative)

Another almost entirely equivalent mode of application configuration
exists named declarative configuration. Pyramid can be
configured for the same “hello world” application “declaratively”, if
so desired.

To do so, first, create a file named helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from pyramid.config import Configurator
from pyramid.response import Response
from paste.httpserver import serve

def hello_world(request):
 return Response('Hello world!')

def goodbye_world(request):
 return Response('Goodbye world!')

if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Then create a file named configure.zcml in the same directory as
the previously created helloworld.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <view
 view="helloworld.hello_world"
 />

 <view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

</configure>

This pair of files forms an application functionally equivalent to the
application we created earlier in Hello World, Goodbye World. We can run
it the same way.

$ python helloworld.py
serving on 0.0.0.0:8080 view at http://127.0.0.1:8080

Let’s examine the differences between the code in that section and the code
above. In Application Configuration, we had the following lines
within the if __name__ == '__main__' section of helloworld.py:

	1
2
3
4
5
6
7
8

	if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.add_view(hello_world)
 config.add_view(goodbye_world, name='goodbye')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

In our “declarative” code, we’ve added a call to the
pyramid.config.Configurator.load_zcml() method with
the value configure.zcml, and we’ve removed the lines which read
config.add_view(hello_world) and config.add_view(goodbye_world,
name='goodbye'), so that it now reads as:

	1
2
3
4
5
6
7

	if __name__ == '__main__':
 config = Configurator()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

Everything else is much the same.

The config.load_zcml('configure.zcml') line tells the configurator
to load configuration declarations from the configure.zcml file
which sits next to helloworld.py. Let’s take a look at the
configure.zcml file now:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	<configure xmlns="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <view
 view="helloworld.hello_world"
 />

 <view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

</configure>

We already understand what the view code does, because the application
is functionally equivalent to the application described in
Hello World, Goodbye World, but use of ZCML is new. Let’s
break that down tag-by-tag.

The <configure> Tag

The configure.zcml ZCML file contains this bit of XML:

	1
2
3
4
5

	 <configure xmlns="http://pylonshq.com/pyramid">

 <!-- other directives -->

 </configure>

Because ZCML is XML, and because XML requires a single root
tag for each document, every ZCML file used by Pyramid must
contain a configure container directive, which acts as the root
XML tag. It is a “container” directive because its only job is to
contain other directives.

See also configure and A Word On XML Namespaces.

The <include> Tag

The configure.zcml ZCML file contains this bit of XML within the
<configure> root tag:

	1

	<include package="pyramid.includes" />

This self-closing tag instructs Pyramid to load a ZCML file
from the Python package with the dotted Python name
pyramid.includes, as specified by its package attribute.
This particular <include> declaration is required because it
actually allows subsequent declaration tags (such as <view>, which
we’ll see shortly) to be recognized. The <include> tag
effectively just includes another ZCML file, causing its declarations
to be executed. In this case, we want to load the declarations from
the file named configure.zcml within the
pyramid.includes Python package. We know we want to load
the configure.zcml from this package because configure.zcml is
the default value for another attribute of the <include> tag named
file. We could have spelled the include tag more verbosely, but
equivalently as:

	1
2

	<include package="pyramid.includes"
 file="configure.zcml"/>

The <include> tag that includes the ZCML statements implied by the
configure.zcml file from the Python package named
pyramid.includes is basically required to come before any
other named declaration in an application’s configure.zcml. If it
is not included, subsequent declaration tags will fail to be
recognized, and the configuration system will generate an error at
startup. However, the <include package="pyramid.includes"/>
tag needs to exist only in a “top-level” ZCML file, it needn’t also
exist in ZCML files included by a top-level ZCML file.

See also include.

The <view> Tag

The configure.zcml ZCML file contains these bits of XML after the
<include> tag, but within the <configure> root tag:

	1
2
3
4
5
6
7
8

	<view
 view="helloworld.hello_world"
 />

<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

These <view> declaration tags direct Pyramid to create
two view configuration registrations. The first <view>
tag has an attribute (the attribute is also named view), which
points at a dotted Python name, referencing the
hello_world function defined within the helloworld package.
The second <view> tag has a view attribute which points at a
dotted Python name, referencing the goodbye_world function
defined within the helloworld package. The second <view> tag
also has an attribute called name with a value of goodbye.

These effect of the <view> tag declarations we’ve put into our
configure.zcml is functionally equivalent to the effect of lines
we’ve already seen in an imperatively-configured application. We’re
just spelling things differently, using XML instead of Python.

In our previously defined application, in which we added view
configurations imperatively, we saw this code:

	1
2

	config.add_view(hello_world)
config.add_view(goodbye_world, name='goodbye')

Each <view> declaration tag encountered in a ZCML file effectively
invokes the pyramid.config.Configurator.add_view()
method on the behalf of the developer. Various attributes can be
specified on the <view> tag which influence the view
configuration it creates.

Since the relative ordering of calls to
pyramid.config.Configurator.add_view() doesn’t matter
(see the sidebar entitled View Dispatch and Ordering within
Adding Configuration), the relative order of <view> tags in
ZCML doesn’t matter either. The following ZCML orderings are
completely equivalent:

Hello Before Goodbye

	1
2
3
4
5
6
7
8

	<view
 view="helloworld.hello_world"
 />

<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

Goodbye Before Hello

	1
2
3
4
5
6
7
8

	<view
 name="goodbye"
 view="helloworld.goodbye_world"
 />

<view
 view="helloworld.hello_world"
 />

We’ve now configured a Pyramid helloworld application
declaratively. More information about this mode of configuration is
available in Declarative Configuration and within
ZCML Directive Reference.

Scanning via ZCML

ZCML can invoke a scan via its <scan> directive. If a
ZCML file is processed that contains a scan directive, the package the ZCML
file points to is scanned.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	# helloworld.py

from paste.httpserver import serve
from pyramid.response import Response
from pyramid.view import view_config

@view_config()
def hello(request):
 return Response('Hello')

if __name__ == '__main__':
 from pyramid.config import Configurator
 config = Configurator()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 app = config.make_wsgi_app()
 serve(app, host='0.0.0.0')

	1
2
3
4
5
6
7
8

	<configure xmlns="http://namespaces.repoze.org">

 <!-- configure.zcml -->

 <include package="pyramid.includes"/>
 <scan package="."/>

</configure>

See also scan.

Which Mode Should I Use?

A combination of imperative configuration, declarative configuration
via ZCML and scanning can be used to configure any application. They
are not mutually exclusive.

The Pyramid authors often recommend using mostly declarative
configuration, because it’s the more traditional form of configuration
used in Pyramid applications, it can be overridden and
extended by third party deployers, and there are more examples for it
“in the wild”.

However, imperative mode configuration can be simpler to understand,
and the framework is not “opinionated” about the choice. This book
presents examples in both styles, mostly interchangeably. You can
choose the mode that best fits your brain as necessary.

View Configuration Via ZCML

You may associate a view with a URL by adding view
declarations via ZCML in a configure.zcml file. An
example of a view declaration in ZCML is as follows:

	1
2
3
4
5

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 name="hello.html"
 />

The above maps the .views.hello_world view callable function to
the following set of resource location results:

	A context object which is an instance (or subclass) of the
Python class represented by .resources.Hello

	A view name equalling hello.html.

Note

Values prefixed with a period (.) for the context
and view attributes of a view declaration (such as those
above) mean “relative to the Python package directory in which this
ZCML file is stored”. So if the above view declaration
was made inside a configure.zcml file that lived in the
hello package, you could replace the relative .resources.Hello
with the absolute hello.resources.Hello; likewise you could
replace the relative .views.hello_world with the absolute
hello.views.hello_world. Either the relative or absolute form
is functionally equivalent. It’s often useful to use the relative
form, in case your package’s name changes. It’s also shorter to
type.

You can also declare a default view callable for a resource type:

	1
2
3
4

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 />

A default view callable simply has no name attribute. For the above
registration, when a context is found that is of the type
.resources.Hello and there is no view name associated with the
result of resource location, the default view callable will be
used. In this case, it’s the view at .views.hello_world.

A default view callable can alternately be defined by using the empty
string as its name attribute:

	1
2
3
4
5

	<view
 context=".resources.Hello"
 view=".views.hello_world"
 name=""
 />

You may also declare that a view callable is good for any context type
by using the special * character as the value of the context
attribute:

	1
2
3
4
5

	<view
 context="*"
 view=".views.hello_world"
 name="hello.html"
 />

This indicates that when Pyramid identifies that the
view name is hello.html and the context is of any type,
the .views.hello_world view callable will be invoked.

A ZCML view declaration’s view attribute can also name a
class. In this case, the rules described in Defining a View Callable as a Class
apply for the class which is named.

See view for complete ZCML directive documentation.

Configuring a Route via ZCML

Instead of using the imperative pyramid.config.Configurator.add_route()
method to add a new route, you can alternately use ZCML.
route statements in a ZCML file. For example, the
following ZCML declaration causes a route to be added to the
application.

	1
2
3
4
5

	<route
 name="myroute"
 pattern="/prefix/{one}/{two}"
 view=".views.myview"
 />

Note

Values prefixed with a period (.) within the values of ZCML
attributes such as the view attribute of a route mean
“relative to the Python package directory in which this
ZCML file is stored”. So if the above route
declaration was made inside a configure.zcml file that lived in
the hello package, you could replace the relative
.views.myview with the absolute hello.views.myview Either
the relative or absolute form is functionally equivalent. It’s
often useful to use the relative form, in case your package’s name
changes. It’s also shorter to type.

The order that routes are evaluated when declarative configuration is used
is the order that they appear relative to each other in the ZCML file.

See route for full route ZCML directive
documentation.

Configuring a Handler via ZCML

Instead of using the imperative
pyramid.config.Configurator.add_handler() method to add a new
route, you can alternately use ZCML. handler
statements in a ZCML file used by your application is a sign that
you’re using URL dispatch. For example, the following ZCML
declaration causes a route to be added to the application.

	1
2
3
4
5

	<handler
 route_name="myroute"
 pattern="/prefix/{action}"
 handler=".handlers.MyHandler"
 />

Note

Values prefixed with a period (.) within the values of ZCML attributes
such as the handler attribute of a handler directive mean
“relative to the Python package directory in which this ZCML file
is stored”. So if the above handler declaration was made inside a
configure.zcml file that lived in the hello package, you could
replace the relative .views.MyHandler with the absolute
hello.views.MyHandler Either the relative or absolute form is
functionally equivalent. It’s often useful to use the relative form, in
case your package’s name changes. It’s also shorter to type.

The order that the routes attached to handlers are evaluated when declarative
configuration is used is the order that they appear relative to each other in
the ZCML file.

See handler for full handler ZCML directive
documentation.

Serving Static Assets Using ZCML

Use of the static ZCML directive makes static assets available at a name
relative to the application root URL, e.g. /static.

Note that the path provided to the static ZCML directive may be a
fully qualified asset specification, a package-relative path, or
an absolute path. The path with the value a/b/c/static of a
static directive in a ZCML file that resides in the “mypackage” package
will resolve to a package-qualified assets such as
some_package:a/b/c/static.

Here’s an example of a static ZCML directive that will serve files
up under the /static URL from the /var/www/static directory of
the computer which runs the Pyramid application using an
absolute path.

	1
2
3
4

	<static
 name="static"
 path="/var/www/static"
 />

Here’s an example of a static directive that will serve files up
under the /static URL from the a/b/c/static directory of the
Python package named some_package using a fully qualified
asset specification.

	1
2
3
4

	<static
 name="static"
 path="some_package:a/b/c/static"
 />

Here’s an example of a static directive that will serve files up
under the /static URL from the static directory of the Python
package in which the configure.zcml file lives using a
package-relative path.

	1
2
3
4

	<static
 name="static"
 path="static"
 />

Whether you use for path a fully qualified asset specification,
an absolute path, or a package-relative path, When you place your
static files on the filesystem in the directory represented as the
path of the directive, you will then be able to view the static
files in this directory via a browser at URLs prefixed with the
directive’s name. For instance if the static directive’s
name is static and the static directive’s path is
/path/to/static, http://localhost:6543/static/foo.js will
return the file /path/to/static/dir/foo.js. The static directory
may contain subdirectories recursively, and any subdirectories may
hold files; these will be resolved by the static view as you would
expect.

While the path argument can be a number of different things, the
name argument of the static ZCML directive can also be one of
a number of things: a view name or a URL. The above examples have
shown usage of the name argument as a view name. When name is
a URL (or any string with a slash (/) in it), static assets
can be served from an external webserver. In this mode, the name
is used as the URL prefix when generating a URL using
pyramid.url.static_url().

For example, the static ZCML directive may be fed a name
argument which is http://example.com/images:

	1
2
3
4

	<static
 name="http://example.com/images"
 path="mypackage:images"
 />

Because the static ZCML directive is provided with a name argument
that is the URL prefix http://example.com/images, subsequent calls to
pyramid.url.static_url() with paths that start with the path
argument passed to pyramid.url.static_url() will generate a URL
something like http://example.com/logo.png. The external webserver
listening on example.com must be itself configured to respond properly to
such a request. The pyramid.url.static_url() API is discussed in more
detail later in this chapter.

The pyramid.config.Configurator.add_static_view() method offers
an imperative equivalent to the static ZCML directive. Use of the
add_static_view imperative configuration method is completely equivalent
to using ZCML for the same purpose. See Serving Static Assets for
more information.

The asset ZCML Directive

Instead of using pyramid.config.Configurator.override_asset() during
imperative configuration, an equivalent ZCML directive can be used.
The ZCML asset tag is a frontend to using
pyramid.config.Configurator.override_asset().

An individual Pyramid asset ZCML statement can override a
single asset. For example:

	1
2
3
4

	 <asset
 to_override="some.package:templates/mytemplate.pt"
 override_with="another.package:othertemplates/anothertemplate.pt"
 />

The string value passed to both to_override and override_with
attached to an asset directive is called an “asset specification”. The
colon separator in a specification separates the package name from the
asset name. The colon and the following asset name are optional. If they
are not specified, the override attempts to resolve every lookup into a
package from the directory of another package. For example:

	1
2
3
4

	 <asset
 to_override="some.package"
 override_with="another.package"
 />

Individual subdirectories within a package can also be overridden:

	1
2
3
4

	 <asset
 to_override="some.package:templates/"
 override_with="another.package:othertemplates/"
 />

If you wish to override an asset directory with another directory, you must
make sure to attach the slash to the end of both the to_override
specification and the override_with specification. If you fail to attach
a slash to the end of an asset specification that points to a directory, you
will get unexpected results.

The package name in an asset specification may start with a dot, meaning that
the package is relative to the package in which the ZCML file resides. For
example:

	1
2
3
4

	 <asset
 to_override=".subpackage:templates/"
 override_with="another.package:templates/"
 />

See also asset.

Enabling an Authorization Policy Via ZCML

If you’d rather use ZCML to specify an authorization policy
than imperative configuration, modify the ZCML file loaded by your
application (usually named configure.zcml) to enable an
authorization policy.

For example, to enable a policy which compares the value of an “auth ticket”
cookie passed in the request’s environment which contains a reference to a
single principal against the principals present in any ACL
found in the resource tree when attempting to call some view, modify
your configure.zcml to look something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	<configure xmlns="http://pylonshq.com/pyramid">

 <!-- views and other directives before this... -->

 <authtktauthenticationpolicy
 secret="iamsosecret"/>

 <aclauthorizationpolicy/>

 </configure>

“Under the hood”, these statements cause an instance of the class
pyramid.authentication.AuthTktAuthenticationPolicy to be
injected as the authentication policy used by this application
and an instance of the class
pyramid.authorization.ACLAuthorizationPolicy to be
injected as the authorization policy used by this application.

Pyramid ships with a number of authorization and
authentication policy ZCML directives that should prove useful. See
Built-In Authentication Policy ZCML Directives and
Built-In Authorization Policy ZCML Directives for more information.

Built-In Authentication Policy ZCML Directives

Instead of configuring an authentication policy and authorization
policy imperatively, Pyramid ships with a few “pre-chewed”
authentication policy ZCML directives that you can make use of within
your application.

authtktauthenticationpolicy

When this directive is used, authentication information is obtained
from an “auth ticket” cookie value, assumed to be set by a custom
login form.

An example of its usage, with all attributes fully expanded:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	<authtktauthenticationpolicy
 secret="goshiamsosecret"
 callback=".somemodule.somefunc"
 cookie_name="mycookiename"
 secure="false"
 include_ip="false"
 timeout="86400"
 reissue_time="600"
 max_age="31536000"
 path="/"
 http_only="false"
 />

See authtktauthenticationpolicy for details about
this directive.

remoteuserauthenticationpolicy

When this directive is used, authentication information is obtained
from a REMOTE_USER key in the WSGI environment, assumed to
be set by a WSGI server or an upstream middleware component.

An example of its usage, with all attributes fully expanded:

	1
2
3
4

	<remoteuserauthenticationpolicy
 environ_key="REMOTE_USER"
 callback=".somemodule.somefunc"
 />

See remoteuserauthenticationpolicy for detailed
information.

repozewho1authenticationpolicy

When this directive is used, authentication information is obtained
from a repoze.who.identity key in the WSGI environment, assumed to
be set by repoze.who middleware.

An example of its usage, with all attributes fully expanded:

	1
2
3
4

	<repozewho1authenticationpolicy
 identifier_name="auth_tkt"
 callback=".somemodule.somefunc"
 />

See repozewho1authenticationpolicy for detailed
information.

Built-In Authorization Policy ZCML Directives

aclauthorizationpolicy

When this directive is used, authorization information is obtained
from ACL objects attached to resources.

An example of its usage, with all attributes fully expanded:

	1

	<aclauthorizationpolicy/>

In other words, it has no configuration attributes; its existence in a
configure.zcml file enables it.

See aclauthorizationpolicy for detailed information.

Adding and Overriding Renderers via ZCML

New templating systems and serializers can be associated with Pyramid
renderer names. To this end, configuration declarations can be made which
override an existing renderer factory and which add a new renderer
factory.

Adding or overriding a renderer via ZCML is accomplished via the
renderer ZCML directive.

For example, to add a renderer which renders views which have a
renderer attribute that is a path that ends in .jinja2:

	1
2
3
4

	<renderer
 name=".jinja2"
 factory="my.package.MyJinja2Renderer"
 />

The factory attribute is a dotted Python name that must
point to an implementation of a renderer factory.

The name attribute is the renderer name.

Registering a Renderer Factory

See Adding a New Renderer for more information for the definition of a
renderer factory. Here’s an example of the registration of a simple
renderer factory via ZCML:

	1
2
3
4

	<renderer
 name="amf"
 factory="my.package.MyAMFRenderer"
 />

Adding the above ZCML to your application will allow you to use the
my.package.MyAMFRenderer renderer factory implementation in view
configurations by subseqently referring to it as amf in the renderer
attribute of a view configuration:

	1
2
3
4

	<view
 view="mypackage.views.my_view"
 renderer="amf"
 />

Here’s an example of the registration of a more complicated renderer
factory, which expects to be passed a filesystem path:

	1
2
3
4

	<renderer
 name=".jinja2"
 factory="my.package.MyJinja2Renderer"
 />

Adding the above ZCML to your application will allow you to use the
my.package.MyJinja2Renderer renderer factory implementation in
view configurations by referring to any renderer which ends in
.jinja in the renderer attribute of a view
configuration:

	1
2
3
4

	<view
 view="mypackage.views.my_view"
 renderer="templates/mytemplate.jinja2"
 />

When a view configuration which has a name attribute that does
contain a dot, such as templates/mytemplate.jinja2 above is encountered at
startup time, the value of the name attribute is split on its final dot. The
second element of the split is typically the filename extension. This
extension is used to look up a renderer factory for the configured view. Then
the value of renderer is passed to the factory to create a renderer for the
view. In this case, the view configuration will create an instance of a
Jinja2Renderer for each view configuration which includes anything ending
with .jinja2 as its renderer value. The name passed to the
Jinja2Renderer constructor will be whatever the user passed as
renderer= to the view configuration.

See also renderer and
pyramid.config.Configurator.add_renderer().

Overriding an Existing Renderer

You can associate more than one filename extension with the same
existing renderer implementation as necessary if you need to use a
different file extension for the same kinds of templates. For
example, to associate the .zpt extension with the Chameleon ZPT
renderer factory, use:

	1
2
3
4

	<renderer
 name=".zpt"
 factory="pyramid.chameleon_zpt.renderer_factory"
 />

After you do this, Pyramid will treat templates ending in
both the .pt and .zpt filename extensions as Chameleon ZPT
templates.

To override the default mapping in which files with a .pt
extension are rendered via a Chameleon ZPT page template renderer, use
a variation on the following in your application’s ZCML:

	1
2
3
4

	<renderer
 name=".pt"
 factory="my.package.pt_renderer"
 />

After you do this, the renderer factory in
my.package.pt_renderer will be used to render templates which end
in .pt, replacing the default Chameleon ZPT renderer.

To override the default mapping in which files with a .txt
extension are rendered via a Chameleon text template renderer, use a
variation on the following in your application’s ZCML:

	1
2
3
4

	<renderer
 name=".txt"
 factory="my.package.text_renderer"
 />

After you do this, the renderer factory in
my.package.text_renderer will be used to render templates which
end in .txt, replacing the default Chameleon text renderer.

To associate a default renderer with all view configurations (even
ones which do not possess a renderer attribute), use a variation
on the following (ie. omit the name attribute to the renderer
tag):

	1
2
3

	<renderer
 factory="pyramid.renderers.json_renderer_factory"
 />

See also renderer and
pyramid.config.Configurator.add_renderer().

Adding a Translation Directory via ZCML

You can add a translation directory via ZCML by using the
translationdir ZCML directive:

	1

	<translationdir dir="my.application:locale/"/>

A message catalog in a translation directory added via
translationdir will be merged into translations from
a message catalog added earlier if both translation directories
contain translations for the same locale and translation
domain.

See also translationdir and
Adding a Translation Directory.

Adding a Custom Locale Negotiator via ZCML

You can add a custom locale negotiator via ZCML by using the
localenegotiator ZCML directive:

	1
2
3

	 <localenegotiator
 negotiator="my_application.my_module.my_locale_negotiator"
 />

See also Using a Custom Locale Negotiator and
localenegotiator.

Configuring an Event Listener via ZCML

You can configure an subscriber by modifying your application’s
configure.zcml. Here’s an example of a bit of XML you can add to the
configure.zcml file which registers the above mysubscriber function,
which we assume lives in a subscribers.py module within your application:

	1
2
3
4

	<subscriber
 for="pyramid.events.NewRequest"
 handler=".subscribers.mysubscriber"
 />

See also subscriber and Using Events.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Extending An Existing Pyramid Application

If the developer of a Pyramid application has obeyed certain
constraints while building that application, a third party should be
able to change its behavior without needing to modify its source code.
The behavior of a Pyramid application that obeys certain
constraints can be overridden or extended without modification.

Rules for Building An Extensible Application

There’s only one rule you need to obey if you want to build a
maximally extensible Pyramid application: you should not use
any configuration decoration or imperative
configuration. This means the application developer should avoid
relying on configuration decoration meant to be detected via
a scan, and you mustn’t configure your Pyramid
application imperatively by using any code which configures the
application through methods of the Configurator (except for
the pyramid.config.Configurator.load_zcml() method).

Instead, you must always use ZCML for the equivalent
purposes. ZCML declarations that belong to an application can be
“overridden” by integrators as necessary, but decorators and imperative code
which perform the same tasks cannot. Use only ZCML to configure your
application if you’d like it to be extensible. See
Declarative Configuration for information about using ZCML.

Fundamental Plugpoints

The fundamental “plug points” of an application developed using
Pyramid are routes, views, and resources. Routes are
declarations made using the ZCML <route> directive. Views are
declarations made using the ZCML <view> directive (or the
@view_config decorator). Resources are files that are accessed by
Pyramid using the pkg_resources API such as static
files and templates.

ZCML Granularity

It’s extremely helpful to third party application “extenders” (aka
“integrators”) if the ZCML that composes the configuration for
an application is broken up into separate files which do very specific
things. These more specific ZCML files can be reintegrated within the
application’s main configure.zcml via <include
file="otherfile.zcml"/> declarations. When ZCML files contain sets
of specific declarations, an integrator can avoid including any ZCML
he does not want by including only ZCML files which contain the
declarations he needs. He is not forced to “accept everything” or
“use nothing”.

For example, it’s often useful to put all <route> declarations in
a separate ZCML file, as <route> statements have a relative
ordering that is extremely important to the application: if an
extender wants to add a route to the “middle” of the routing table, he
will always need to disuse all the routes and cut and paste the
routing configuration into his own application. It’s useful for the
extender to be able to disuse just a single ZCML file in this case,
accepting the remainder of the configuration from other ZCML
files in the original application.

Granularizing ZCML is not strictly required. An extender can always
disuse all your ZCML, choosing instead to copy and paste it into his
own package, if necessary. However, doing so is considerate, and
allows for the best reusability.

Extending an Existing Application

The steps for extending an existing application depend largely on
whether the application does or does not use configuration decorators
and/or imperative code.

Extending an Application Which Possesses Configuration Decorators Or Which Does Configuration Imperatively

If you’ve inherited a Pyramid application which uses
pyramid.view.view_config decorators or which performs
configuration imperatively, one of two things may be true:

	If you just want to extend the application, you can write
additional ZCML that registers more views or routes, loading any
existing ZCML and continuing to use any existing imperative
configuration done by the original application.

	If you want to override configuration in the application, you
may need to change the source code of the original application.

If the only source of trouble is the existence of
pyramid.view.view_config decorators, you can just prevent a
scan from happening (by omitting the <scan> declaration
from ZCML or omitting any call to the
pyramid.config.Configurator.scan() method). This
will cause the decorators to do nothing. At this point, you will
need to convert all the configuration done in decorators into
equivalent ZCML and add that ZCML to a separate Python
package as described in Extending an Application Which Does Not Possess Configuration Decorators or Imperative Configuration.

If the source of trouble is configuration done imperatively in a
function called during application startup, you’ll need to change
the code: convert imperative configuration statements into
equivalent ZCML declarations.

Once this is done, you should be able to extend or override the
application like any other (see Extending an Application Which Does Not Possess Configuration Decorators or Imperative Configuration).

Extending an Application Which Does Not Possess Configuration Decorators or Imperative Configuration

To extend or override the behavior of an existing application, you
will need to write some ZCML, and perhaps some implementations
of the types of things you’d like to override (such as views), which
are referred to within that ZCML.

The general pattern for extending an existing application looks
something like this:

	Create a new Python package. The easiest way to do this is to
create a new Pyramid application using the “paster”
template mechanism. See Creating the Project for more
information.

	Install the new package into the same Python environment as the
original application (e.g. python setup.py develop or python
setup.py install).

	Change the configure.zcml in the new package to include the
original Pyramid application’s configure.zcml via an
include statement, e.g. <include package="theoriginalapp"/>.
Alternately, if the original application writer anticipated
overriding some things and not others, instead of including the
“main” configure.zcml of the original application, include only
specific ZCML files from the original application using the file
attribute of the <include> statement, e.g. <include
package="theoriginalapp" file="views.zcml"/>.

	On a line in the new package’s configure.zcml file that falls
after (XML-ordering-wise) all the include statements of the original
package ZCML, put an includeOverrides statement which identifies
another ZCML file within the new package (for example
<includeOverrides file="overrides.zcml"/>.

	Create an overrides.zcml file within the new package. The
statements in the overrides.zcml file will override any ZCML
statements made within the original application (such as view
declarations).

	Create Python files containing views and other overridden elements,
such as templates and static resources as necessary, and wire these
up using ZCML registrations within the overrides.zcml file.
These registrations may extend or override the original view
registrations. See Overriding Views,
Overriding Routes and Overriding Resources.

	In the __init__.py of the new package, load the configure.zcml file
of the new package using the
pyramid.config.Configurator.load_zcml() method.

Overriding Views

The ZCML <view> declarations you make which override application
behavior will usually have the same context and name (and
predicate attributes, if used) as the original. These
<view> declarations will point at “new” view code. The new view
code itself will usually be cut-n-paste copies of view callables from
the original application with slight tweaks. For example:

	1
2
3
4
5

	 <view
 context="theoriginalapplication.resources.SomeResource"
 name="theview"
 view=".views.a_view_that_does_something_slightly_different"
 />

A similar pattern can be used to extend the application with <view>
declarations. Just register a new view against some existing resource type
(using context) and make sure the URLs it implies are available on some
other page rendering.

Overriding Routes

Route setup is currently typically performed in a sequence of ordered
ZCML <route> declarations. Because these declarations are ordered
relative to each other, and because this ordering is typically
important, you should retain the relative ordering of these
declarations when performing an override. Typically, this means
copying all the <route> declarations into an external ZCML file
and changing them as necessary. Then disinclude any ZCML from the
original application which contains the original declarations.

Overriding Resources

“Resource” files are static files on the filesystem that are
accessible within a Python package. An entire chapter is devoted to
resources: resources_chapter. Within this chapter is a section
named overriding_resources_section. This section of that
chapter describes in detail how to override package resources with
other resources by using ZCML <resource> declarations. Add
such <resource> declarations to your override package’s
configure.zcml to perform overrides.

Dealing With ZCML Inclusions

Sometimes it’s possible to include only certain ZCML files from an
application that contain only the registrations you really need,
omitting others. But sometimes it’s not. For brute force purposes,
when you’re getting view or route registrations that you don’t
actually want in your overridden application, it’s always appropriate
to just not include any ZCML file from the overridden application.
Instead, just cut and paste the entire contents of the
configure.zcml (and any ZCML file included by the overridden
application’s configure.zcml) into your own package and omit the
<include package=""/> ZCML declaration in the overriding package’s
configure.zcml.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Assets

An asset is any file contained within a Python package which
is not a Python source code file. For example, each of the following is an
asset:

	a Chameleon template file contained within a Python package.

	a GIF image file contained within a Python package.

	a CSS file contained within a Python package.

	a JavaScript source file contained within a Python package.

	A directory within a package that does not have an __init__.py
in it (if it possessed an __init__.py it would be a package).

The use of assets is quite common in most web development projects. For
example, when you create a Pyramid application using one of the
available “paster” templates, as described in Creating the Project, the
directory representing the application contains a Python package.
Within that Python package, there are directories full of files which are
assets. For example, there is a templates directory which contains
.pt files, and a static directory which contains .css, .js,
and .gif files.

Understanding Assets

Let’s imagine you’ve created a Pyramid application that uses a
Chameleon ZPT template via the
pyramid.chameleon_zpt.render_template_to_response() API. For example,
the application might address the asset named templates/some_template.pt
using that API within a views.py file inside a myapp package:

	1
2

	from pyramid.chameleon_zpt import render_template_to_response
render_template_to_response('templates/some_template.pt')

“Under the hood”, when this API is called, Pyramid attempts
to make sense out of the string templates/some_template.pt
provided by the developer. To do so, it first finds the “current”
package. The “current” package is the Python package in which the
views.py module which contains this code lives. This would be the
myapp package, according to our example so far. By resolving the
current package, Pyramid has enough information to locate
the actual template file. These are the elements it needs:

	The package name (myapp)

	The asset name (templates/some_template.pt)

Pyramid uses the pkg_resources API to resolve the package name
and asset name to an absolute (operating-system-specific) file name. It
eventually passes this resolved absolute filesystem path to the Chameleon
templating engine, which then uses it to load, parse, and execute the
template file.

Package names often contain dots. For example, pyramid is a package.
Asset names usually look a lot like relative UNIX file paths.

Overriding Assets

It can often be useful to override specific assets from “outside” a given
Pyramid application. For example, you may wish to reuse an existing
Pyramid application more or less unchanged. However, some specific
template file owned by the application might have inappropriate HTML, or some
static asset (such as a logo file or some CSS file) might not be appropriate.
You could just fork the application entirely, but it’s often more
convenient to just override the assets that are inappropriate and reuse the
application “as is”. This is particularly true when you reuse some “core”
application over and over again for some set of customers (such as a CMS
application, or some bug tracking application), and you want to make
arbitrary visual modifications to a particular application deployment without
forking the underlying code.

To this end, Pyramid contains a feature that makes it possible to
“override” one asset with one or more other assets. In support of this
feature, a Configurator API exists named
pyramid.config.Configurator.override_asset(). This API allows you to
override the following kinds of assets defined in any Python package:

	Individual Chameleon templates.

	A directory containing multiple Chameleon templates.

	Individual static files served up by an instance of the
pyramid.view.static helper class.

	A directory of static files served up by an instance of the
pyramid.view.static helper class.

	Any other asset (or set of assets) addressed by code that uses the
setuptools pkg_resources API.

Note

The ZCML directive named asset serves the same purpose
as the pyramid.config.Configurator.override_asset() method.

The override_asset API

An individual call to pyramid.config.Configurator.override_asset()
can override a single asset. For example:

	1
2
3

	config.override_asset(
 to_override='some.package:templates/mytemplate.pt',
 override_with='another.package:othertemplates/anothertemplate.pt')

The string value passed to both to_override and override_with sent to
the override_asset API is called an asset specification. The
colon separator in a specification separates the package name from the
asset name. The colon and the following asset name are optional. If they
are not specified, the override attempts to resolve every lookup into a
package from the directory of another package. For example:

	1
2

	config.override_asset(to_override='some.package',
 override_with='another.package')

Individual subdirectories within a package can also be overridden:

	1
2

	config.override_asset(to_override='some.package:templates/',
 override_with='another.package:othertemplates/')

If you wish to override a directory with another directory, you must
make sure to attach the slash to the end of both the to_override
specification and the override_with specification. If you fail to
attach a slash to the end of a specification that points to a directory,
you will get unexpected results.

You cannot override a directory specification with a file specification, and
vice versa: a startup error will occur if you try. You cannot override an
asset with itself: a startup error will occur if you try.

Only individual package assets may be overridden. Overrides will not
traverse through subpackages within an overridden package. This means that
if you want to override assets for both some.package:templates, and
some.package.views:templates, you will need to register two overrides.

The package name in a specification may start with a dot, meaning that
the package is relative to the package in which the configuration
construction file resides (or the package argument to the
pyramid.config.Configurator class construction).
For example:

	1
2

	config.override_asset(to_override='.subpackage:templates/',
 override_with='another.package:templates/')

Multiple calls to override_asset which name a shared to_override but
a different override_with specification can be “stacked” to form a search
path. The first asset that exists in the search path will be used; if no
asset exists in the override path, the original asset is used.

Asset overrides can actually override assets other than templates and static
files. Any software which uses the
pkg_resources.get_resource_filename(),
pkg_resources.get_resource_stream() or
pkg_resources.get_resource_string() APIs will obtain an overridden file
when an override is used.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Request Processing

Once a Pyramid application is up and running, it is ready to
accept requests and return responses.

What happens from the time a WSGI request enters a
Pyramid application through to the point that
Pyramid hands off a response back to WSGI for upstream
processing?

	A user initiates a request from his browser to the hostname and
port number of the WSGI server used by the Pyramid
application.

	The WSGI server used by the Pyramid application passes
the WSGI environment to the __call__ method of the
Pyramid router object.

	A request object is created based on the WSGI environment.

	The application registry and the request object
created in the last step are pushed on to the thread local
stack that Pyramid uses to allow the functions named
pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry() to work.

	A pyramid.events.NewRequest event is sent to any
subscribers.

	If any route has been defined within application
configuration, the Pyramid router calls a
URL dispatch “route mapper.” The job of the mapper is to
examine the request to determine whether any user-defined
route matches the current WSGI environment. The
router passes the request as an argument to the mapper.

	If any route matches, the request is mutated; a matchdict and
matched_route attributes are added to the request object; the
former contains a dictionary representign the matched dynamic
elements of the request’s PATH_INFO value, the latter contains
the pyramid.interfaces.IRoute object representing the
route which matched. The root object associated with the route
found is also generated: if the route configuration which
matched has an associated a factory argument, this factory is
used to generate the root object, otherwise a default root
factory is used.

	If a route match was not found, and a root_factory argument
was passed to the Configurator constructor, that callable
is used to generate the root object. If the root_factory
argument passed to the Configurator constructor was None, a
default root factory is used to generate a root object.

	The Pyramid router calls a “traverser” function with the
root object and the request. The traverser function attempts to
traverse the root object (using any existing __getitem__ on the
root object and subobjects) to find a context. If the root
object has no __getitem__ method, the root itself is assumed to
be the context. The exact traversal algorithm is described in
Traversal. The traverser function returns a
dictionary, which contains a context and a view
name as well as other ancillary information.

	The request is decorated with various names returned from the
traverser (such as context, view_name, and so forth), so
they can be accessed via e.g. request.context within
view code.

	A pyramid.events.ContextFound event is
sent to any subscribers.

	Pyramid looks up a view callable using the
context, the request, and the view name. If a view callable
doesn’t exist for this combination of objects (based on the type of
the context, the type of the request, and the value of the view
name, and any predicate attributes applied to the view
configuration), Pyramid raises a
pyramid.exceptions.NotFound exception, which is meant
to be caught by a surrounding exception handler.

	If a view callable was found, Pyramid attempts to call
the view function.

	If an authorization policy is in use, and the view was
protected by a permission, Pyramid passes the
context, the request, and the view_name to a function which
determines whether the view being asked for can be executed by the
requesting user, based on credential information in the request and
security information attached to the context. If it returns
True, Pyramid calls the view callable to obtain a
response. If it returns False, it raises a
pyramid.exceptions.Forbidden exception, which is meant
to be called by a surrounding exception handler.

	If any exception was raised within a root factory, by
traversal, by a view callable or by
Pyramid itself (such as when it raises
pyramid.exceptions.NotFound or
pyramid.exceptions.Forbidden), the router catches the
exception, and attaches it to the request as the exception
attribute. It then attempts to find a exception view for
the exception that was caught. If it finds an exception view
callable, that callable is called, and is presumed to generate a
response. If an exception view that matches the exception
cannot be found, the exception is reraised.

	The following steps occur only when a response could be
successfully generated by a normal view callable or an
exception view callable. Pyramid will attempt to execute
any response callback functions attached via
pyramid.request.Request.add_response_callback(). A
pyramid.events.NewResponse event is then sent to any
subscribers. The response object’s app_iter, status, and
headerlist attributes are then used to generate a WSGI response. The
response is sent back to the upstream WSGI server.

	Pyramid will attempt to execute any finished
callback functions attached via
pyramid.request.Request.add_finished_callback().

	The thread local stack is popped.

[image: ../_images/router.png]
This is a very high-level overview that leaves out various details.
For more detail about subsystems invoked by the Pyramid router
such as traversal, URL dispatch, views, and event processing, see
Resource Location and View Lookup, Views, and
Using Events.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Thread Locals

A thread local variable is a variable that appears to be a
“global” variable to an application which uses it. However, unlike a
true global variable, one thread or process serving the application
may receive a different value than another thread or process when that
variable is “thread local”.

When a request is processed, Pyramid makes two thread
local variables available to the application: a “registry” and a
“request”.

Why and How Pyramid Uses Thread Local Variables

How are thread locals beneficial to Pyramid and application
developers who use Pyramid? Well, usually they’re decidedly
not. Using a global or a thread local variable in any application
usually makes it a lot harder to understand for a casual reader. Use
of a thread local or a global is usually just a way to avoid passing
some value around between functions, which is itself usually a very
bad idea, at least if code readability counts as an important concern.

For historical reasons, however, thread local variables are indeed
consulted by various Pyramid API functions. For example,
the implementation of the pyramid.security function named
pyramid.security.authenticated_userid() retrieves the thread
local application registry as a matter of course to find an
authentication policy. It uses the
pyramid.threadlocal.get_current_registry() function to
retrieve the application registry, from which it looks up the
authentication policy; it then uses the authentication policy to
retrieve the authenticated user id. This is how Pyramid
allows arbitrary authentication policies to be “plugged in”.

When they need to do so, Pyramid internals use two API
functions to retrieve the request and application
registry: pyramid.threadlocal.get_current_request() and
pyramid.threadlocal.get_current_registry(). The former
returns the “current” request; the latter returns the “current”
registry. Both get_current_* functions retrieve an object from a
thread-local data structure. These API functions are documented in
pyramid.threadlocal.

These values are thread locals rather than true globals because one
Python process may be handling multiple simultaneous requests or even
multiple Pyramid applications. If they were true globals,
Pyramid could not handle multiple simultaneous requests or
allow more than one Pyramid application instance to exist in
a single Python process.

Because one Pyramid application is permitted to call
another Pyramid application from its own view code
(perhaps as a WSGI app with help from the
pyramid.wsgi.wsgiapp2() decorator), these variables are
managed in a stack during normal system operations. The stack
instance itself is a threading.local [http://docs.python.org/library/threading.html#threading.local].

During normal operations, the thread locals stack is managed by a
Router object. At the beginning of a request, the Router
pushes the application’s registry and the request on to the stack. At
the end of a request, the stack is popped. The topmost request and
registry on the stack are considered “current”. Therefore, when the
system is operating normally, the very definition of “current” is
defined entirely by the behavior of a pyramid Router.

However, during unit testing, no Router code is ever invoked, and the
definition of “current” is defined by the boundary between calls to
the pyramid.config.Configurator.begin() and
pyramid.config.Configurator.end() methods (or between
calls to the pyramid.testing.setUp() and
pyramid.testing.tearDown() functions). These functions push
and pop the threadlocal stack when the system is under test. See
Test Set Up and Tear Down for the definitions of these functions.

Scripts which use Pyramid machinery but never actually start
a WSGI server or receive requests via HTTP such as scripts which use
the pyramid.scripting API will never cause any Router code
to be executed. However, the pyramid.scripting APIs also
push some values on to the thread locals stack as a matter of course.
Such scripts should expect the
pyramid.threadlocal.get_current_request() function to always
return None, and should expect the
pyramid.threadlocal.get_current_registry() function to return
exactly the same application registry for every request.

Why You Shouldn’t Abuse Thread Locals

You probably should almost never use the
pyramid.threadlocal.get_current_request() or
pyramid.threadlocal.get_current_registry() functions, except
perhaps in tests. In particular, it’s almost always a mistake to use
get_current_request or get_current_registry in application
code because its usage makes it possible to write code that can be
neither easily tested nor scripted. Inappropriate usage is defined as
follows:

	get_current_request should never be called within the body of a
view callable, or within code called by a view callable.
View callables already have access to the request (it’s passed in to
each as request).

	
	get_current_request should never be called in resource code.

	If a resource needs access to the request, it should be passed the request
by a view callable.

	get_current_request function should never be called because it’s
“easier” or “more elegant” to think about calling it than to pass a
request through a series of function calls when creating some API
design. Your application should instead almost certainly pass data
derived from the request around rather than relying on being able to
call this function to obtain the request in places that actually
have no business knowing about it. Parameters are meant to be
passed around as function arguments, this is why they exist. Don’t
try to “save typing” or create “nicer APIs” by using this function
in the place where a request is required; this will only lead to
sadness later.

	Neither get_current_request nor get_current_registry should
ever be called within application-specific forks of third-party
library code. The library you’ve forked almost certainly has
nothing to do with Pyramid, and making it dependent on
Pyramid (rather than making your pyramid
application depend upon it) means you’re forming a dependency in the
wrong direction.

Use of the pyramid.threadlocal.get_current_request() function
in application code is still useful in very limited circumstances.
As a rule of thumb, usage of get_current_request is useful
within code which is meant to eventually be removed. For
instance, you may find yourself wanting to deprecate some API that
expects to be passed a request object in favor of one that does not
expect to be passed a request object. But you need to keep
implementations of the old API working for some period of time while
you deprecate the older API. So you write a “facade” implementation
of the new API which calls into the code which implements the older
API. Since the new API does not require the request, your facade
implementation doesn’t have local access to the request when it needs
to pass it into the older API implementation. After some period of
time, the older implementation code is disused and the hack that uses
get_current_request is removed. This would be an appropriate
place to use the get_current_request.

Use of the pyramid.threadlocal.get_current_registry()
function should be limited to testing scenarios. The registry made
current by use of the
pyramid.config.Configurator.begin() method during a
test (or via pyramid.testing.setUp()) when you do not pass
one in is available to you via this API.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Using the Zope Component Architecture in Pyramid

Under the hood, Pyramid uses a Zope Component
Architecture component registry as its application registry.
The Zope Component Architecture is referred to colloquially as the
“ZCA.”

The zope.component API used to access data in a traditional Zope
application can be opaque. For example, here is a typical “unnamed
utility” lookup using the zope.component.getUtility() global API
as it might appear in a traditional Zope application:

	1
2
3

	from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But
it’s unlikely that any “civilian” will be able to figure this out just
by reading the code casually. When the zope.component.getUtility
API is used by a developer, the conceptual load on a casual reader of
code is high.

While the ZCA is an excellent tool with which to build a framework
such as Pyramid, it is not always the best tool with which
to build an application due to the opacity of the zope.component
APIs. Accordingly, Pyramid tends to hide the the presence
of the ZCA from application developers. You needn’t understand the
ZCA to create a Pyramid application; its use is effectively
only a framework implementation detail.

However, developers who are already used to writing Zope
applications often still wish to use the ZCA while building a
Pyramid application; pyramid makes this possible.

Using the ZCA Global API in a Pyramid Application

Zope uses a single ZCA registry – the “global” ZCA registry
– for all Zope applications run in the same Python process,
effectively making it impossible to run more than one Zope application
in a single process.

However, for ease of deployment, it’s often useful to be able to run
more than a single application per process. For example, use of a
Paste “composite” allows you to run separate individual WSGI
applications in the same process, each answering requests for some URL
prefix. This makes it possible to run, for example, a TurboGears
application at /turbogears and a BFG application at /bfg, both
served up using the same WSGI server within a single Python
process.

Most production Zope applications are relatively large, making it
impractical due to memory constraints to run more than one Zope
application per Python process. However, a Pyramid
application may be very small and consume very little memory, so it’s
a reasonable goal to be able to run more than one BFG application per
process.

In order to make it possible to run more than one Pyramid
application in a single process, Pyramid defaults to using a
separate ZCA registry per application.

While this services a reasonable goal, it causes some issues when
trying to use patterns which you might use to build a typical
Zope application to build a Pyramid application.
Without special help, ZCA “global” APIs such as
zope.component.getUtility and zope.component.getSiteManager
will use the ZCA “global” registry. Therefore, these APIs
will appear to fail when used in a Pyramid application,
because they’ll be consulting the ZCA global registry rather than the
component registry associated with your Pyramid application.

There are three ways to fix this: by disusing the ZCA global API
entirely, by using
pyramid.config.Configurator.hook_zca() or by passing
the ZCA global registry to the Configurator constructor at
startup time. We’ll describe all three methods in this section.

Disusing the Global ZCA API

ZCA “global” API functions such as zope.component.getSiteManager,
zope.component.getUtility, zope.component.getAdapter, and
zope.component.getMultiAdapter aren’t strictly necessary. Every
component registry has a method API that offers the same
functionality; it can be used instead. For example, presuming the
registry value below is a Zope Component Architecture component
registry, the following bit of code is equivalent to
zope.component.getUtility(IFoo):

	1

	registry.getUtility(IFoo)

The full method API is documented in the zope.component package,
but it largely mirrors the “global” API almost exactly.

If you are willing to disuse the “global” ZCA APIs and use the method
interface of a registry instead, you need only know how to obtain the
Pyramid component registry.

There are two ways of doing so:

	use the pyramid.threadlocal.get_current_registry()
function within Pyramid view or resource code. This will
always return the “current” Pyramid application registry.

	use the attribute of the request object named registry
in your Pyramid view code, eg. request.registry. This
is the ZCA component registry related to the running
Pyramid application.

See Thread Locals for more information about
pyramid.threadlocal.get_current_registry().

Enabling the ZCA Global API by Using hook_zca

Consider the following bit of idiomatic Pyramid startup code:

	1
2
3
4
5
6
7
8
9

	from zope.component import getGlobalSiteManager
from pyramid.config import Configurator

def app(global_settings, **settings):
 config = Configurator(settings=settings)
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 return config.make_wsgi_app()

When the app function above is run, a Configurator is
constructed. When the configurator is created, it creates a new
application registry (a ZCA component registry). A new
registry is constructed whenever the registry argument is omitted
when a Configurator constructor is called, or when a
registry argument with a value of None is passed to a
Configurator constructor.

During a request, the application registry created by the Configurator
is “made current”. This means calls to
pyramid.threadlocal.get_current_registry() in the thread
handling the request will return the component registry associated
with the application.

As a result, application developers can use get_current_registry
to get the registry and thus get access to utilities and such, as per
Disusing the Global ZCA API. But they still cannot use the
global ZCA API. Without special treatment, the ZCA global APIs will
always return the global ZCA registry (the one in
zope.component.globalregistry.base).

To “fix” this and make the ZCA global APIs use the “current” BFG
registry, you need to call
pyramid.config.Configurator.hook_zca() within your
setup code. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from zope.component import getGlobalSiteManager
from pyramid.config import Configurator

def app(global_settings, **settings):
 config = Configurator(settings=settings)
 config.hook_zca()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 return config.make_wsgi_app()

We’ve added a line to our original startup code, line number 6, which
calls config.hook_zca(). The effect of this line under the hood
is that an analogue of the following code is executed:

	1
2
3

	from zope.component import getSiteManager
from pyramid.threadlocal import get_current_registry
getSiteManager.sethook(get_current_registry)

This causes the ZCA global API to start using the Pyramid
application registry in threads which are running a Pyramid
request.

Calling hook_zca is usually sufficient to “fix” the problem of
being able to use the global ZCA API within a Pyramid
application. However, it also means that a Zope application that is
running in the same process may start using the Pyramid
global registry instead of the Zope global registry, effectively
inverting the original problem. In such a case, follow the steps in
the next section, Enabling the ZCA Global API by Using The ZCA Global Registry.

Enabling the ZCA Global API by Using The ZCA Global Registry

You can tell your Pyramid application to use the ZCA global
registry at startup time instead of constructing a new one:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from zope.component import getGlobalSiteManager
from pyramid.config import Configurator

def app(global_settings, **settings):
 globalreg = getGlobalSiteManager()
 config = Configurator(registry=globalreg)
 config.setup_registry(settings=settings)
 config.hook_zca()
 config.begin()
 config.load_zcml('configure.zcml')
 config.end()
 return config.make_wsgi_app()

Lines 5, 6, and 7 above are the interesting ones. Line 5 retrieves
the global ZCA component registry. Line 6 creates a
Configurator, passing the global ZCA registry into its
constructor as the registry argument. Line 7 “sets up” the global
registry with BFG-specific registrations; this is code that is
normally executed when a registry is constructed rather than created,
but we must call it “by hand” when we pass an explicit registry.

At this point, Pyramid will use the ZCA global registry
rather than creating a new application-specific registry; since by
default the ZCA global API will use this registry, things will work as
you might expect a Zope app to when you use the global ZCA API.

Using Broken ZCML Directives

Some Zope and third-party ZCML directives use the
zope.component.getGlobalSiteManager API to get “the registry” when
they should actually be calling zope.component.getSiteManager.

zope.component.getSiteManager can be overridden by
Pyramid via
pyramid.config.Configurator.hook_zca(), while
zope.component.getGlobalSiteManager cannot. Directives that use
zope.component.getGlobalSiteManager are effectively broken; no
ZCML directive should be using this function to find a registry to
populate.

You cannot use ZCML directives which use
zope.component.getGlobalSiteManager within a Pyramid
application without passing the ZCA global registry to the
Configurator constructor at application startup, as per
Enabling the ZCA Global API by Using The ZCA Global Registry.

One alternative exists: fix the ZCML directive to use
getSiteManager rather than getGlobalSiteManager. If a
directive disuses getGlobalSiteManager, the hook_zca method of
using a component registry as documented in Enabling the ZCA Global API by Using hook_zca will begin
to work, allowing you to make use of the ZCML directive without
also using the ZCA global registry.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

API Documentation

Comprehensive reference material for every public API exposed by
Pyramid is available within this chapter. The API
documentation is organized alphabetically by module name.

	pyramid.authorization

	pyramid.authentication

	pyramid.chameleon_text

	pyramid.chameleon_zpt

	pyramid.config

	pyramid.events

	pyramid.exceptions

	pyramid.httpexceptions

	pyramid.i18n

	pyramid.interfaces

	pyramid.location

	pyramid.paster

	pyramid.registry

	pyramid.renderers

	pyramid.request

	pyramid.response

	pyramid.router

	pyramid.scripting

	pyramid.security

	pyramid.session

	pyramid.settings

	pyramid.testing

	pyramid.threadlocal

	pyramid.traversal

	pyramid.url

	pyramid.view

	pyramid.wsgi

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.authorization

	
class ACLAuthorizationPolicy

	An authorization policy which consults an ACL
object attached to a context to determine authorization
information about a principal or multiple principals.
If the context is part of a lineage, the context’s parents
are consulted for ACL information too. The following is true
about this security policy.

	When checking whether the ‘current’ user is permitted (via the
permits method), the security policy consults the
context for an ACL first. If no ACL exists on the context,
or one does exist but the ACL does not explicitly allow or deny
access for any of the effective principals, consult the
context’s parent ACL, and so on, until the lineage is exhausted
or we determine that the policy permits or denies.

During this processing, if any pyramid.security.Deny
ACE is found matching any principal in principals, stop
processing by returning an
pyramid.security.ACLDenied instance (equals
False) immediately. If any
pyramid.security.Allow ACE is found matching any
principal, stop processing by returning an
pyramid.security.ACLAllowed instance (equals
True) immediately. If we exhaust the context’s
lineage, and no ACE has explicitly permitted or denied
access, return an instance of
pyramid.security.ACLDenied (equals False).

	When computing principals allowed by a permission via the
pyramid.security.principals_allowed_by_permission()
method, we compute the set of principals that are explicitly
granted the permission in the provided context. We do
this by walking ‘up’ the object graph from the root to the
context. During this walking process, if we find an explicit
pyramid.security.Allow ACE for a principal that
matches the permission, the principal is included in the
allow list. However, if later in the walking process that
principal is mentioned in any pyramid.security.Deny
ACE for the permission, the principal is removed from the allow
list. If a pyramid.security.Deny to the principal
pyramid.security.Everyone is encountered during the
walking process that matches the permission, the allow list
is cleared for all principals encountered in previous ACLs. The
walking process ends after we’ve processed the any ACL directly
attached to context; a set of principals is returned.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.authentication

	
class AuthTktAuthenticationPolicy(secret, callback=None, cookie_name='auth_tkt', secure=False, include_ip=False, timeout=None, reissue_time=None, max_age=None, path='/', http_only=False)

	A Pyramid authentication policy which
obtains data from an paste.auth.auth_tkt cookie.

Constructor Arguments

secret

The secret (a string) used for auth_tkt cookie signing.
Required.

callback

Default: None. A callback passed the userid and the
request, expected to return None if the userid doesn’t
exist or a sequence of group identifiers (possibly empty) if
the user does exist. If callback is None, the userid
will be assumed to exist with no groups. Optional.

cookie_name

Default: auth_tkt. The cookie name used
(string). Optional.

secure

Default: False. Only send the cookie back over a secure
conn. Optional.

include_ip

Default: False. Make the requesting IP address part of
the authentication data in the cookie. Optional.

timeout

Default: None. Maximum number of seconds which a newly
issued ticket will be considered valid. After this amount of
time, the ticket will expire (effectively logging the user
out). If this value is None, the ticket never expires.
Optional.

reissue_time

Default: None. If this parameter is set, it represents the
number of seconds that must pass before an authentication token
cookie is reissued. The duration is measured as the number of
seconds since the last auth_tkt cookie was issued and ‘now’.
If the timeout value is None, this parameter has no
effect. If this parameter is provided, and the value of
timeout is not None, the value of reissue_time must
be smaller than value of timeout. A good rule of thumb: if
you want auto-reissued cookies: set this to the timeout
value divided by ten. If this value is 0, a new ticket
cookie will be reissued on every request which needs
authentication. Optional.

max_age

Default: None. The max age of the auth_tkt cookie, in
seconds. This differs from timeout inasmuch as timeout
represents the lifetime of the ticket contained in the cookie,
while this value represents the lifetime of the cookie itself.
When this value is set, the cookie’s Max-Age and
Expires settings will be set, allowing the auth_tkt cookie
to last between browser sessions. It is typically nonsensical
to set this to a value that is lower than timeout or
reissue_time, although it is not explicitly prevented.
Optional.

path

Default: /. The path for which the auth_tkt cookie is valid.
May be desirable if the application only serves part of a domain.
Optional.

http_only

Default: False. Hide cookie from JavaScript by setting the
HttpOnly flag. Not honored by all browsers.
Optional.

	
class RepozeWho1AuthenticationPolicy(identifier_name='auth_tkt', callback=None)

	A Pyramid authentication policy which
obtains data from the repoze.who 1.X WSGI ‘API’ (the
repoze.who.identity key in the WSGI environment).

Constructor Arguments

identifier_name

Default: auth_tkt. The repoze.who plugin name that
performs remember/forget. Optional.

callback

Default: None. A callback passed the repoze.who
identity and the request, expected to return None
if the user represented by the identity doesn’t exist or a
sequence of group identifiers (possibly empty) if the user
does exist. If callback is None, the userid will be
assumed to exist with no groups.

	
class RemoteUserAuthenticationPolicy(environ_key='REMOTE_USER', callback=None)

	A Pyramid authentication policy which
obtains data from the REMOTE_USER WSGI environment variable.

Constructor Arguments

environ_key

Default: REMOTE_USER. The key in the WSGI environ which
provides the userid.

callback

Default: None. A callback passed the userid and the request,
expected to return None if the userid doesn’t exist or a sequence
of group identifiers (possibly empty) if the user does exist.
If callback is None, the userid will be assumed to exist with no
groups.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.chameleon_text

	
get_template(path)

	Return the underyling object representing a Chameleon
text template using the template implied by the path argument.
The path argument may be a package-relative path, an absolute
path, or a asset specification.

Warning

This API is deprecated in Pyramid 1.0. Use
the implementation() method of a template renderer retrieved via
pyramid.renderers.get_renderer() instead.

	
render_template(path, **kw)

	Render a Chameleon text template using the template
implied by the path argument. The path argument may be a
package-relative path, an absolute path, or a asset
specification. The arguments in *kw are passed as top-level
names to the template, and so may be used within the template
itself. Returns a string.

Warning

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render() instead.

	
render_template_to_response(path, **kw)

	Render a Chameleon text template using the template
implied by the path argument. The path argument may be a
package-relative path, an absolute path, or a asset
specification. The arguments in *kw are passed as top-level
names to the template, and so may be used within the template
itself. Returns a Response object with the body as the
template result.

Warning

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render_to_response() instead.

These APIs will will work against template files which contain simple
${Genshi} - style replacement markers.

The API of pyramid.chameleon_text is identical to that of
pyramid.chameleon_zpt; only its import location is
different. If you need to import an API functions from this module as
well as the pyramid.chameleon_zpt module within the same
view file, use the as feature of the Python import statement,
e.g.:

	1
2

	from pyramid.chameleon_zpt import render_template as zpt_render
from pyramid.chameleon_text import render_template as text_render

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.chameleon_zpt

	
get_template(path)

	Return the underyling object representing a Chameleon
ZPT template using the template implied by the path argument.
The path argument may be a package-relative path, an absolute
path, or a asset specification.

Warning

This API is deprecated in Pyramid 1.0. Use
the implementation() method of a template renderer retrieved via
pyramid.renderers.get_renderer() instead.

	
render_template(path, **kw)

	Render a Chameleon ZPT template using the template
implied by the path argument. The path argument may be a
package-relative path, an absolute path, or a asset
specification. The arguments in *kw are passed as top-level
names to the template, and so may be used within the template
itself. Returns a string.

Warning

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render() instead.

	
render_template_to_response(path, **kw)

	Render a Chameleon ZPT template using the template
implied by the path argument. The path argument may be a
package-relative path, an absolute path, or a asset
specification. The arguments in *kw are passed as top-level
names to the template, and so may be used within the template
itself. Returns a Response object with the body as the
template result.

Warning

This API is deprecated in Pyramid 1.0. Use
pyramid.renderers.render_to_response() instead.

These APIs will work against files which supply template text which
matches the ZPT specification.

The API of pyramid.chameleon_zpt is identical to that of
pyramid.chameleon_text; only its import location is
different. If you need to import an API functions from this module as
well as the pyramid.chameleon_text module within the same
view file, use the as feature of the Python import statement,
e.g.:

	1
2

	from pyramid.chameleon_zpt import render_template as zpt_render
from pyramid.chameleon_text import render_template as text_render

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.config

	
class Configurator(registry=None, package=None, settings=None, root_factory=None, authentication_policy=None, authorization_policy=None, renderers=DEFAULT_RENDERERS, debug_logger=None, locale_negotiator=None, request_factory=None, renderer_globals_factory=None, default_permission=None, session_factory=None, autocommit=False)

	A Configurator is used to configure a Pyramid
application registry.

The Configurator accepts a number of arguments: registry,
package, settings, root_factory, authentication_policy,
authorization_policy, renderers debug_logger,
locale_negotiator, request_factory, renderer_globals_factory,
default_permission, session_factory, and autocommit.

If the registry argument is passed as a non-None value, it
must be an instance of the pyramid.registry.Registry
class representing the registry to configure. If registry is
None, the configurator will create a
pyramid.registry.Registry instance itself; it will
also perform some default configuration that would not otherwise
be done. After construction, the configurator may be used to add
configuration to the registry. The overall state of a registry is
called the ‘configuration state’.

Warning

If a registry is passed to the Configurator
constructor, all other constructor arguments except package
are ignored.

If the package argument is passed, it must be a reference to a
Python package (e.g. sys.modules['thepackage']) or a
dotted Python name to same. This value is used as a basis
to convert relative paths passed to various configuration methods,
such as methods which accept a renderer argument, into
absolute paths. If None is passed (the default), the package
is assumed to be the Python package in which the caller of the
Configurator constructor lives.

If the settings argument is passed, it should be a Python dictionary
representing the deployment settings for this application. These are
later retrievable using the pyramid.registry.Registry.settings
attribute (aka request.registry.settings).

If the root_factory argument is passed, it should be an object
representing the default root factory for your application
or a dotted Python name to same. If it is None, a
default root factory will be used.

If authentication_policy is passed, it should be an instance
of an authentication policy or a dotted Python
name to same.

If authorization_policy is passed, it should be an instance of
an authorization policy or a dotted Python name to
same.

Note

A ConfigurationError will be raised when an
authorization policy is supplied without also supplying an
authentication policy (authorization requires authentication).

If renderers is passed, it should be a list of tuples
representing a set of renderer factories which should be
configured into this application (each tuple representing a set of
positional values that should be passed to
pyramid.config.Configurator.add_renderer()). If
it is not passed, a default set of renderer factories is used.

If debug_logger is not passed, a default debug logger that
logs to stderr will be used. If it is passed, it should be an
instance of the logging.Logger (PEP 282) standard library
class or a dotted Python name to same. The debug logger
is used by Pyramid itself to log warnings and
authorization debugging information.

If locale_negotiator is passed, it should be a locale
negotiator implementation or a dotted Python name to
same. See Using a Custom Locale Negotiator.

If request_factory is passed, it should be a request
factory implementation or a dotted Python name to same.
See custom_request_factory. By default it is None,
which means use the default request factory.

If renderer_globals_factory is passed, it should be a
renderer globals factory implementation or a dotted
Python name to same. See custom_renderer_globals_factory.
By default, it is None, which means use no renderer globals
factory.

If default_permission is passed, it should be a
permission string to be used as the default permission for
all view configuration registrations performed against this
Configurator. An example of a permission string:'view'.
Adding a default permission makes it unnecessary to protect each
view configuration with an explicit permission, unless your
application policy requires some exception for a particular view.
By default, default_permission is None, meaning that view
configurations which do not explicitly declare a permission will
always be executable by entirely anonymous users (any
authorization policy in effect is ignored). See also
Setting a Default Permission.

If session_factory is passed, it should be an object which
implements the session factory interface. If a nondefault
value is passed, the session_factory will be used to create a
session object when request.session is accessed. Note that
the same outcome can be achieved by calling
pyramid.config.Configurator.set_session_factory(). By
default, this argument is None, indicating that no session
factory will be configured (and thus accessing request.session
will throw an error) unless set_session_factory is called later
during configuration.

If autocommit is True, every method called on the configurator
will cause an immediate action, and no configuration conflict detection
will be used. If autocommit is False, most methods of the
configurator will defer their action until
pyramid.config.Configurator.commit() is called. When
pyramid.config.Configurator.commit() is called, the actions implied
by the called methods will be checked for configuration conflicts unless
autocommit is True. If a conflict is detected a
ConfigurationConflictError will be raised. Calling
pyramid.config.Configurator.make_wsgi_app() always implies a final
commit.

	
registry

	The application registry which holds the configuration
associated with this configurator.

	
begin(request=None)

	Indicate that application or test configuration has begun.
This pushes a dictionary containing the application
registry implied by registry attribute of this
configurator and the request implied by the
request argument on to the thread local stack
consulted by various pyramid.threadlocal API
functions.

	
end()

	Indicate that application or test configuration has ended.
This pops the last value pushed on to the thread local
stack (usually by the begin method) and returns that
value.

	
hook_zca()

	Call zope.component.getSiteManager.sethook() with
the argument
pyramid.threadlocal.get_current_registry, causing
the Zope Component Architecture ‘global’ APIs such as
zope.component.getSiteManager(),
zope.component.getAdapter() and others to use the
Pyramid application registry rather than the
Zope ‘global’ registry. If zope.component cannot be
imported, this method will raise an ImportError.

	
unhook_zca()

	Call zope.component.getSiteManager.reset() to undo
the action of
pyramid.config.Configurator.hook_zca(). If
zope.component cannot be imported, this method will
raise an ImportError.

	
get_settings()

	Return a ‘settings’ object for the current application. A
‘settings’ object is a dictionary-like object that contains
key/value pairs based on the dictionary passed as the settings
argument to the pyramid.config.Configurator
constructor or the pyramid.router.make_app() API.

Note

For backwards compatibility, dictionary keys can also be
looked up as attributes of the settings object.

Note

the pyramid.registry.Registry.settings API
performs the same duty.

	
commit()

	Commit any pending configuration actions. If a configuration
conflict is detected in the pending configuration actins, this method
will raise a ConfigurationConflictError; within the traceback
of this error will be information about the source of the conflict,
usually including file names and line numbers of the cause of the
configuration conflicts.

	
action(discriminator, callable=None, args=(), kw=None, order=0)

	Register an action which will be executed when
pyramid.config.Configuration.commit() is called (or executed
immediately if autocommit is True).

Note

This method is typically only used by Pyramid

framework extension authors, not by Pyramid application
developers.

The discriminator uniquely identifies the action. It must be
given, but it can be None, to indicate that the action never
conflicts. It must be a hashable value.

The callable is a callable object which performs the action. It
is optional. args and kw are tuple and dict objects
respectively, which are passed to callable when this action is
executed.

order is a crude order control mechanism, only rarely used (has
no effect when autocommit is True).

	
include(*callables)

	Include one or more configuration callables, to support imperative
application extensibility.

A configuration callable should be a callable that accepts a single
argument named config, which will be an instance of a
Configurator (be warned that it will not be the same
configurator instance on which you call this method, however). The
code which runs as the result of calling the callable should invoke
methods on the configurator passed to it which add configuration
state. The return value of a callable will be ignored.

Values allowed to be presented via the *callables argument to
this method: any callable Python object or any dotted Python
name which resolves to a callable Python object.

For example, if the configure function below lives in a module
named myapp.myconfig:

	1
2
3
4
5
6
7
8

	# myapp.myconfig module

def my_view(request):
 from pyramid.response import Response
 return Response('OK')

def configure(config):
 config.add_view(my_view)

You might cause it be included within your Pyramid application like
so:

	1
2
3
4
5

	from pyramid.config import Configurator

def main(global_config, **settings):
 config = Configurator()
 config.include('myapp.myconfig.configure')

Included configuration statements will be overridden by local
configuration statements if an included callable causes a
configuration conflict by registering something with the same
configuration parameters.

	
with_package(package)

	Return a new Configurator instance with the same registry
as this configurator using the package supplied as the
package argument to the new configurator. package may
be an actual Python package object or a Python dotted name
representing a package.

	
maybe_dotted(dotted)

	Resolve the dotted Python name dotted to a
global Python object. If dotted is not a string, return
it without attempting to do any name resolution. If
dotted is a relative dotted name (e.g. .foo.bar,
consider it relative to the package argument supplied to
this Configurator’s constructor.

	
absolute_asset_spec(relative_spec)

	Resolve the potentially relative asset
specification string passed as relative_spec into an
absolute asset specification string and return the string.
Use the package of this configurator as the package to
which the asset specification will be considered relative
when generating an absolute asset specification. If the
provided relative_spec argument is already absolute, or if
the relative_spec is not a string, it is simply returned.

	
setup_registry(settings=None, root_factory=None, authentication_policy=None, renderers=DEFAULT_RENDERERS, debug_logger=None, locale_negotiator=None, request_factory=None, renderer_globals_factory=None)

	When you pass a non-None registry argument to the
Configurator constructor, no initial ‘setup’ is performed
against the registry. This is because the registry you pass in may
have already been initialized for use under Pyramid via a
different configurator. However, in some circumstances (such as when
you want to use the Zope ‘global` registry instead of a registry
created as a result of the Configurator constructor), or when you
want to reset the initial setup of a registry, you do want to
explicitly initialize the registry associated with a Configurator for
use under Pyramid. Use setup_registry to do this
initialization.

setup_registry configures settings, a root factory, security
policies, renderers, a debug logger, a locale negotiator, and various
other settings using the configurator’s current registry, as per the
descriptions in the Configurator constructor.

	
add_renderer(name, factory)

	Add a Pyramid renderer factory to the
current configuration state.

The name argument is the renderer name. Use None to
represent the default renderer (a renderer which will be used for all
views unless they name another renderer specifically).

The factory argument is Python reference to an
implementation of a renderer factory or a
dotted Python name to same.

Note that this function must be called before any
add_view invocation that names the renderer name as an
argument. As a result, it’s usually a better idea to pass
globally used renderers into the Configurator constructor
in the sequence of renderers passed as renderer than it is
to use this method.

	
add_route(*arg, **kw)

	Add a route configuration to the current
configuration state, as well as possibly a view
configuration to be used to specify a view callable
that will be invoked when this route matches. The arguments
to this method are divided into predicate, non-predicate,
and view-related types. Route predicate arguments
narrow the circumstances in which a route will be match a
request; non-predicate arguments are informational.

Non-Predicate Arguments

name

The name of the route, e.g. myroute. This attribute is
required. It must be unique among all defined routes in a given
application.

factory

A Python object (often a function or a class) or a dotted
Python name which refers to the same object that will generate a
Pyramid root resource object when this route matches. For
example, mypackage.resources.MyFactory. If this argument is
not specified, a default root factory will be used.

traverse

If you would like to cause the context to be
something other than the root object when this route
matches, you can spell a traversal pattern as the
traverse argument. This traversal pattern will be used
as the traversal path: traversal will begin at the root
object implied by this route (either the global root, or the
object returned by the factory associated with this
route).

The syntax of the traverse argument is the same as it is
for pattern. For example, if the pattern provided to
add_route is articles/{article}/edit, and the
traverse argument provided to add_route is
/{article}, when a request comes in that causes the route
to match in such a way that the article match value is
‘1’ (when the request URI is /articles/1/edit), the
traversal path will be generated as /1. This means that
the root object’s __getitem__ will be called with the
name 1 during the traversal phase. If the 1 object
exists, it will become the context of the request.
Traversal has more information about
traversal.

If the traversal path contains segment marker names which
are not present in the pattern argument, a runtime error
will occur. The traverse pattern should not contain
segment markers that do not exist in the pattern
argument.

A similar combining of routing and traversal is available
when a route is matched which contains a *traverse
remainder marker in its pattern (see
Using *traverse In a Route Pattern). The traverse
argument to add_route allows you to associate route patterns
with an arbitrary traversal path without using a a
*traverse remainder marker; instead you can use other
match information.

Note that the traverse argument to add_route is
ignored when attached to a route that has a *traverse
remainder marker in its pattern.

pregenerator

This option should be a callable object that implements the
pyramid.interfaces.IRoutePregenerator
interface. A pregenerator is a callable called by
the pyramid.url.route_url function to augment or
replace the arguments it is passed when generating a URL
for the route. This is a feature not often used directly
by applications, it is meant to be hooked by frameworks
that use Pyramid as a base.

Predicate Arguments

pattern

The pattern of the route e.g. ideas/{idea}. This
argument is required. See route_path_pattern_syntax
for information about the syntax of route patterns. If the
pattern doesn’t match the current URL, route matching
continues.

Note

For backwards compatibility purposes (as of
Pyramid 1.0), a path keyword argument passed
to this function will be used to represent the pattern
value if the pattern argument is None. If both
path and pattern are passed, pattern wins.

xhr

This value should be either True or False. If this
value is specified and is True, the request must
possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header for this route to match. This
is useful for detecting AJAX requests issued from jQuery,
Prototype and other Javascript libraries. If this predicate
returns False, route matching continues.

request_method

A string representing an HTTP method name, e.g. GET,
POST, HEAD, DELETE, PUT. If this argument
is not specified, this route will match if the request has
any request method. If this predicate returns False,
route matching continues.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will return
True. If this predicate returns False, route
matching continues.

request_param

This value can be any string. A view declaration with this
argument ensures that the associated route will only match
when the request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value. If the value
supplied as the argument has a = sign in it,
e.g. request_params="foo=123", then the key
(foo) must both exist in the request.params dictionary, and
the value must match the right hand side of the expression (123)
for the route to “match” the current request. If this predicate
returns False, route matching continues.

header

This argument represents an HTTP header name or a header
name/value pair. If the argument contains a : (colon),
it will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). If
the value contains a colon, the value portion should be a
regular expression. If the value does not contain a colon,
the entire value will be considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant. If this
predicate returns False, route matching continues.

accept

This value represents a match query for one or more
mimetypes in the Accept HTTP request header. If this
value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, this predicate will be true. If this predicate
returns False, route matching continues.

custom_predicates

This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates does what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
info and request and should return either True
or False after doing arbitrary evaluation of the info
and/or the request. If all custom and non-custom predicate
callables return True the associated route will be
considered viable for a given request. If any predicate
callable returns False, route matching continues. Note
that the value info passed to a custom route predicate
is a dictionary containing matching information; see
Custom Route Predicates for more information about
info.

View-Related Arguments

view

A Python object or dotted Python name to the same
object that will be used as a view callable when this route
matches. e.g. mypackage.views.my_view.

view_context

A class or an interface or dotted Python
name to the same object which the context of the
view should match for the view named by the route to be
used. This argument is only useful if the view
attribute is used. If this attribute is not specified, the
default (None) will be used.

If the view argument is not provided, this argument has
no effect.

This attribute can also be spelled as for_ or view_for.

view_permission

The permission name required to invoke the view associated
with this route. e.g. edit. (see
Using Pyramid Security With URL Dispatch for more information
about permissions).

If the view attribute is not provided, this argument has
no effect.

This argument can also be spelled as permission.

view_renderer

This is either a single string term (e.g. json) or a
string implying a path or asset specification
(e.g. templates/views.pt). If the renderer value is a
single term (does not contain a dot .), the specified
term will be used to look up a renderer implementation, and
that renderer implementation will be used to construct a
response from the view return value. If the renderer term
contains a dot (.), the specified term will be treated
as a path, and the filename extension of the last element in
the path will be used to look up the renderer
implementation, which will be passed the full path. The
renderer implementation will be used to construct a response
from the view return value. See
Writing View Callables Which Use a Renderer for more information.

If the view argument is not provided, this argument has
no effect.

This argument can also be spelled as renderer.

view_attr

The view machinery defaults to using the __call__ method
of the view callable (or the function itself, if the view
callable is a function) to obtain a response dictionary.
The attr value allows you to vary the method attribute
used to obtain the response. For example, if your view was
a class, and the class has a method named index and you
wanted to use this method instead of the class’ __call__
method to return the response, you’d say attr="index" in
the view configuration for the view. This is
most useful when the view definition is a class.

If the view argument is not provided, this argument has no
effect.

use_global_views

When a request matches this route, and view lookup cannot
find a view which has a route_name predicate argument
that matches the route, try to fall back to using a view
that otherwise matches the context, request, and view name
(but which does not match the route_name predicate).

	
add_static_view(name, path, cache_max_age=3600, permission='__no_permission_required__')

	Add a view used to render static assets such as images
and CSS files.

The name argument is a string representing view
name of the view which is registered. It may alternately be
a url prefix.

The path argument is the path on disk where the static
files reside. This can be an absolute path, a
package-relative path, or a asset specification.

The cache_max_age keyword argument is input to set the
Expires and Cache-Control headers for static assets
served. Note that this argument has no effect when the
name is a url prefix. By default, this argument is
None, meaning that no particular Expires or Cache-Control
headers are set in the response.

The permission keyword argument is used to specify the
permission required by a user to execute the static view. By
default, it is the string __no_permission_required__. The
__no_permission_required__ string is a special sentinel which
indicates that, even if a default permission exists for the
current application, the static view should be renderered to
completely anonymous users. This default value is permissive
because, in most web apps, static assets seldom need protection from
viewing.

Usage

The add_static_view function is typically used in
conjunction with the pyramid.url.static_url()
function. add_static_view adds a view which renders a
static asset when some URL is visited;
pyramid.url.static_url() generates a URL to that
asset.

The name argument to add_static_view is usually a
view name. When this is the case, the
pyramid.url.static_url() API will generate a URL
which points to a Pyramid view, which will serve up a set of
assets that live in the package itself. For example:

add_static_view('images', 'mypackage:images/')

Code that registers such a view can generate URLs to the view
via pyramid.url.static_url():

static_url('mypackage:images/logo.png', request)

When add_static_view is called with a name argument
that represents a simple view name, as it is above, subsequent
calls to pyramid.url.static_url() with paths that
start with the path argument passed to add_static_view
will generate a URL something like http://<Pyramid app
URL>/images/logo.png, which will cause the logo.png file
in the images subdirectory of the mypackage package to
be served.

add_static_view can alternately be used with a name
argument which is a URL, causing static assets to be
served from an external webserver. This happens when the
name argument is a URL (detected as any string with a
slash in it). In this mode, the name is used as the URL
prefix when generating a URL using
pyramid.url.static_url(). For example, if
add_static_view is called like so:

add_static_view('http://example.com/images', 'mypackage:images/')

Subsequently, the URLs generated by
pyramid.url.static_url() for that static view will be
prefixed with http://example.com/images:

static_url('mypackage:images/logo.png', request)

When add_static_view is called with a name argument
that is the URL prefix http://example.com/images,
subsequent calls to pyramid.url.static_url() with
paths that start with the path argument passed to
add_static_view will generate a URL something like
http://example.com/logo.png. The external webserver
listening on example.com must be itself configured to
respond properly to such a request.

See Serving Static Assets for more information.

	
add_settings(settings=None, **kw)

	Augment the settings argument passed in to the Configurator
constructor with one or more ‘setting’ key/value pairs. A setting is
a single key/value pair in the dictionary-ish object returned from
the API pyramid.registry.Registry.settings and
pyramid.config.Configurator.get_settings().

You may pass a dictionary:

config.add_settings({'external_uri':'http://example.com'})

Or a set of key/value pairs:

config.add_settings(external_uri='http://example.com')

This function is useful when you need to test code that accesses the
pyramid.registry.Registry.settings API (or the
pyramid.config.Configurator.get_settings() API) and
which uses values from that API.

	
add_subscriber(*arg, **kw)

	Add an event subscriber for the event stream
implied by the supplied iface interface. The
subscriber argument represents a callable object (or a
dotted Python name which identifies a callable); it
will be called with a single object event whenever
Pyramid emits an event associated with the
iface, which may be an interface or a class or a
dotted Python name to a global object representing an
interface or a class. Using the default iface value,
None will cause the subscriber to be registered for all
event types. See Using Events for more information
about events and subscribers.

	
add_translation_dirs(*specs)

	Add one or more translation directory paths to the
current configuration state. The specs argument is a
sequence that may contain absolute directory paths
(e.g. /usr/share/locale) or asset specification
names naming a directory path (e.g. some.package:locale)
or a combination of the two.

Example:

add_translations_dirs('/usr/share/locale', 'some.package:locale')

	
add_handler(*arg, **kw)

	Add a Pylons-style view handler. This function adds a
route and some number of views based on a handler object
(usually a class).

route_name is the name of the route (to be used later in
URL generation).

pattern is the matching pattern,
e.g. '/blog/{action}'. pattern may be None, in
which case the pattern of an existing route named the same as
route_name is used. If pattern is None and no
route named route_name exists, a ConfigurationError is
raised.

handler is a dotted name of (or direct reference to) a
Python handler class,
e.g. 'my.package.handlers.MyHandler'.

If {action} or :action is in
the pattern, the exposed methods of the handler will be used
as views.

If action is passed, it will be considered the method name
of the handler to use as a view.

Passing both action and having an {action} in the
route pattern is disallowed.

Any extra keyword arguments are passed along to add_route.

See handlers_chapter for more explanatory documentation.

This method returns the result of add_route.

	
add_view(*arg, **kw)

	Add a view configuration to the current
configuration state. Arguments to add_view are broken
down below into predicate arguments and non-predicate
arguments. Predicate arguments narrow the circumstances in
which the view callable will be invoked when a request is
presented to Pyramid; non-predicate arguments are
informational.

Non-Predicate Arguments

view

A view callable or a dotted Python name
which refers to a view callable. This argument is required
unless a renderer argument also exists. If a
renderer argument is passed, and a view argument is
not provided, the view callable defaults to a callable that
returns an empty dictionary (see
Writing View Callables Which Use a Renderer).

permission

The name of a permission that the user must possess
in order to invoke the view callable. See
Configuring View Security for more information about view
security and permissions. If permission is omitted, a
default permission may be used for this view registration
if one was named as the
pyramid.config.Configurator constructor’s
default_permission argument, or if
pyramid.config.Configurator.set_default_permission()
was used prior to this view registration. Pass the string
__no_permission_required__ as the permission argument to
explicitly indicate that the view should always be
executable by entirely anonymous users, regardless of the
default permission, bypassing any authorization
policy that may be in effect.

attr

The view machinery defaults to using the __call__ method
of the view callable (or the function itself, if the
view callable is a function) to obtain a response. The
attr value allows you to vary the method attribute used
to obtain the response. For example, if your view was a
class, and the class has a method named index and you
wanted to use this method instead of the class’ __call__
method to return the response, you’d say attr="index" in the
view configuration for the view. This is
most useful when the view definition is a class.

renderer

This is either a single string term (e.g. json) or a
string implying a path or asset specification
(e.g. templates/views.pt) naming a renderer
implementation. If the renderer value does not contain
a dot ., the specified string will be used to look up a
renderer implementation, and that renderer implementation
will be used to construct a response from the view return
value. If the renderer value contains a dot (.),
the specified term will be treated as a path, and the
filename extension of the last element in the path will be
used to look up the renderer implementation, which will be
passed the full path. The renderer implementation will be
used to construct a response from the view return
value.

Note that if the view itself returns a response (see
View Callable Responses), the specified renderer implementation
is never called.

When the renderer is a path, although a path is usually just
a simple relative pathname (e.g. templates/foo.pt,
implying that a template named “foo.pt” is in the
“templates” directory relative to the directory of the
current package of the Configurator), a path can be
absolute, starting with a slash on UNIX or a drive letter
prefix on Windows. The path can alternately be a
asset specification in the form
some.dotted.package_name:relative/path, making it
possible to address template assets which live in a
separate package.

The renderer attribute is optional. If it is not
defined, the “null” renderer is assumed (no rendering is
performed and the value is passed back to the upstream
Pyramid machinery unmolested).

wrapper

The view name of a different view
configuration which will receive the response body of this
view as the request.wrapped_body attribute of its own
request, and the response returned by this
view as the request.wrapped_response attribute of its
own request. Using a wrapper makes it possible to “chain”
views together to form a composite response. The response
of the outermost wrapper view will be returned to the user.
The wrapper view will be found as any view is found: see
View Lookup and Invocation. The “best” wrapper view will be found
based on the lookup ordering: “under the hood” this wrapper
view is looked up via
pyramid.view.render_view_to_response(context, request,
'wrapper_viewname'). The context and request of a wrapper
view is the same context and request of the inner view. If
this attribute is unspecified, no view wrapping is done.

Predicate Arguments

name

The view name. Read Traversal to
understand the concept of a view name.

context

An object or a dotted Python name referring to an
interface or class object that the context must be
an instance of, or the interface that the
context must provide in order for this view to be
found and called. This predicate is true when the
context is an instance of the represented class or
if the context provides the represented interface;
it is otherwise false. This argument may also be provided
to add_view as for_ (an older, still-supported
spelling).

route_name

This value must match the name of a route
configuration declaration (see URL Dispatch)
that must match before this view will be called. Note that
the route configuration referred to by route_name
usually has a *traverse token in the value of its
path, representing a part of the path that will be used
by traversal against the result of the route’s
root factory.

Warning

Using this argument services an advanced
feature that isn’t often used unless you want to perform
traversal after a route has matched. See
Combining Traversal and URL Dispatch for more information on using this
advanced feature.

request_type

This value should be an interface that the
request must provide in order for this view to be
found and called. This value exists only for backwards
compatibility purposes.

request_method

This value can either be one of the strings GET,
POST, PUT, DELETE, or HEAD representing an
HTTP REQUEST_METHOD. A view declaration with this
argument ensures that the view will only be called when the
request’s method attribute (aka the REQUEST_METHOD of
the WSGI environment) string matches the supplied value.

request_param

This value can be any string. A view declaration with this
argument ensures that the view will only be called when the
request has a key in the request.params
dictionary (an HTTP GET or POST variable) that has a
name which matches the supplied value. If the value
supplied has a = sign in it,
e.g. request_params="foo=123", then the key (foo)
must both exist in the request.params dictionary, and
the value must match the right hand side of the expression
(123) for the view to “match” the current request.

containment

This value should be a Python class or interface or
a dotted Python name to such an object that a parent
object in the lineage must provide in order for this
view to be found and called. The nodes in your object graph
must be “location-aware” to use this feature. See
Location-Aware Resources for more information about
location-awareness.

xhr

This value should be either True or False. If this
value is specified and is True, the request
must possess an HTTP_X_REQUESTED_WITH (aka
X-Requested-With) header that has the value
XMLHttpRequest for this view to be found and called.
This is useful for detecting AJAX requests issued from
jQuery, Prototype and other Javascript libraries.

accept

The value of this argument represents a match query for one
or more mimetypes in the Accept HTTP request header. If
this value is specified, it must be in one of the following
forms: a mimetype match token in the form text/plain, a
wildcard mimetype match token in the form text/* or a
match-all wildcard mimetype match token in the form */*.
If any of the forms matches the Accept header of the
request, this predicate will be true.

header

This value represents an HTTP header name or a header
name/value pair. If the value contains a : (colon), it
will be considered a name/value pair
(e.g. User-Agent:Mozilla/.* or Host:localhost). The
value portion should be a regular expression. If the value
does not contain a colon, the entire value will be
considered to be the header name
(e.g. If-Modified-Since). If the value evaluates to a
header name only without a value, the header specified by
the name must be present in the request for this predicate
to be true. If the value evaluates to a header name/value
pair, the header specified by the name must be present in
the request and the regular expression specified as the
value must match the header value. Whether or not the value
represents a header name or a header name/value pair, the
case of the header name is not significant.

path_info

This value represents a regular expression pattern that will
be tested against the PATH_INFO WSGI environment
variable. If the regex matches, this predicate will be
True.

custom_predicates

This value should be a sequence of references to custom
predicate callables. Use custom predicates when no set of
predefined predicates do what you need. Custom predicates
can be combined with predefined predicates as necessary.
Each custom predicate callable should accept two arguments:
context and request and should return either
True or False after doing arbitrary evaluation of
the context and/or the request. If all callables return
True, the associated view callable will be considered
viable for a given request.

	
derive_view(view, attr=None, renderer=None)

	Create a view callable using the function, instance,
or class (or dotted Python name referring to the same)
provided as view object.

This is API is useful to framework extenders who create
pluggable systems which need to register ‘proxy’ view
callables for functions, instances, or classes which meet the
requirements of being a Pyramid view callable. For
example, a some_other_framework function in another
framework may want to allow a user to supply a view callable,
but he may want to wrap the view callable in his own before
registering the wrapper as a Pyramid view callable.
Because a Pyramid view callable can be any of a
number of valid objects, the framework extender will not know
how to call the user-supplied object. Running it through
derive_view normalizes it to a callable which accepts two
arguments: context and request.

For example:

def some_other_framework(user_supplied_view):
 config = Configurator(reg)
 proxy_view = config.derive_view(user_supplied_view)
 def my_wrapper(context, request):
 do_something_that_mutates(request)
 return proxy_view(context, request)
 config.add_view(my_wrapper)

The view object provided should be one of the following:

	A function or another non-class callable object that accepts
a request as a single positional argument and which
returns a response object.

	A function or other non-class callable object that accepts
two positional arguments, context, request and which
returns a response object.

	A class which accepts a single positional argument in its
constructor named request, and which has a __call__
method that accepts no arguments that returns a
response object.

	A class which accepts two positional arguments named
context, request, and which has a __call__ method
that accepts no arguments that returns a response
object.

	A dotted Python name which refers to any of the
kinds of objects above.

This API returns a callable which accepts the arguments
context, request and which returns the result of calling
the provided view object.

The attr keyword argument is most useful when the view
object is a class. It names the method that should be used as
the callable. If attr is not provided, the attribute
effectively defaults to __call__. See
Defining a View Callable as a Class for more information.

The renderer keyword argument should be a renderer
name. If supplied, it will cause the returned callable to use
a renderer to convert the user-supplied view result to
a response object. If a renderer argument is not
supplied, the user-supplied view must itself return a
response object.

	
load_zcml(spec)

	Load configuration from a ZCML file into the
current configuration state. The spec argument is an
absolute filename, a relative filename, or a asset
specification, defaulting to configure.zcml (relative to
the package of the configurator’s caller).

	
make_wsgi_app()

	Returns a Pyramid WSGI application representing
the current configuration state and sends a
pyramid.events.ApplicationCreated
event to all listeners.

	
override_asset(to_override, override_with)

	Add a Pyramid asset override to the current
configuration state.

to_override is a asset specification to the
asset being overridden.

override_with is a asset specification to the
asset that is performing the override.

See Assets for more
information about asset overrides.

	
scan(package=None, categories=None)

	Scan a Python package and any of its subpackages for
objects marked with configuration decoration such as
pyramid.view.view_config. Any decorated object found
will influence the current configuration state.

The package argument should be a Python package or
module object (or a dotted Python name which refers to
such a package or module). If package is None, the
package of the caller is used.

The categories argument, if provided, should be the
Venusian ‘scan categories’ to use during scanning.
Providing this argument is not often necessary; specifying
scan categories is an extremely advanced usage.

By default, categories is None which will execute
all Venusian decorator callbacks including
Pyramid-related decorators such as
pyramid.view.view_config. If this is not desirable
because the codebase has other Venusian-using decorators that
aren’t meant to be invoked during a particular scan, use
('pyramid',) as a categories value to limit the execution
of decorator callbacks to only those registered by
Pyramid itself. Or pass a sequence of Venusian scan
categories as necessary (e.g. ('pyramid', 'myframework')) to
limit the decorators called to the set of categories required.

	
set_forbidden_view(*arg, **kw)

	Add a default forbidden view to the current configuration
state.

Warning

This method has been deprecated in Pyramid
1.0. Do not use it for new development; it should only be
used to support older code bases which depend upon it. See
Changing the Forbidden View to see how a forbidden
view should be registered in new projects.

The view argument should be a view callable or a
dotted Python name which refers to a view callable.

The attr argument should be the attribute of the view
callable used to retrieve the response (see the add_view
method’s attr argument for a description).

The renderer argument should be the name of (or path to) a
renderer used to generate a response for this view
(see the
pyramid.config.Configurator.add_view()
method’s renderer argument for information about how a
configurator relates to a renderer).

The wrapper argument should be the name of another view
which will wrap this view when rendered (see the add_view
method’s wrapper argument for a description).

	
set_notfound_view(*arg, **kw)

	Add a default not found view to the current configuration
state.

Warning

This method has been deprecated in
Pyramid 1.0. Do not use it for new development;
it should only be used to support older code bases which
depend upon it. See Changing the Not Found View to
see how a not found view should be registered in new
projects.

The view argument should be a view callable or a
dotted Python name which refers to a view callable.

The attr argument should be the attribute of the view
callable used to retrieve the response (see the add_view
method’s attr argument for a description).

The renderer argument should be the name of (or path to) a
renderer used to generate a response for this view
(see the
pyramid.config.Configurator.add_view()
method’s renderer argument for information about how a
configurator relates to a renderer).

The wrapper argument should be the name of another view
which will wrap this view when rendered (see the add_view
method’s wrapper argument for a description).

	
set_locale_negotiator(*arg, **kw)

	Set the locale negotiator for this application. The
locale negotiator is a callable which accepts a
request object and which returns a locale
name. The negotiator argument should be the locale
negotiator implementation or a dotted Python name
which refers to such an implementation.

Later calls to this method override earlier calls; there can
be only one locale negotiator active at a time within an
application. See Activating Translation for more
information.

Note

Using the locale_negotiator argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
set_default_permission(*arg, **kw)

	Set the default permission to be used by all subsequent
view configuration registrations. permission
should be a permission string to be used as the
default permission. An example of a permission
string:'view'. Adding a default permission makes it
unnecessary to protect each view configuration with an
explicit permission, unless your application policy requires
some exception for a particular view.

If a default permission is not set, views represented by
view configuration registrations which do not explicitly
declare a permission will be executable by entirely anonymous
users (any authorization policy is ignored).

Later calls to this method override earlier calls; there can
be only one default permission active at a time within an
application.

See also Setting a Default Permission.

Note

Using the default_permission argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
set_session_factory(*arg, **kw)

	Configure the application with a session factory. If
this method is called, the session_factory argument must
be a session factory callable.

	
set_request_factory(*arg, **kw)

	The object passed as factory should be an object (or a
dotted Python name which refers to an object) which
will be used by the Pyramid router to create all
request objects. This factory object must have the same
methods and attributes as the
pyramid.request.Request class (particularly
__call__, and blank).

Note

Using the :meth:request_factory argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
set_renderer_globals_factory(*arg, **kw)

	The object passed as factory should be an callable (or
a dotted Python name which refers to an callable) that
will be used by the Pyramid rendering machinery as a
renderers global factory (see Adding Renderer Globals).

The factory callable must accept a single argument named
system (which will be a dictionary) and it must return a
dictionary. When an application uses a renderer, the
factory’s return dictionary will be merged into the system
dictionary, and therefore will be made available to the code
which uses the renderer.

Note

Using the renderer_globals_factory()
argument to the
pyramid.config.Configurator constructor
can be used to achieve the same purpose.

	
testing_securitypolicy(userid=None, groupids=(), permissive=True)

	Unit/integration testing helper: Registers a pair of faux
Pyramid security policies: a authentication
policy and a authorization policy.

The behavior of the registered authorization policy
depends on the permissive argument. If permissive is
true, a permissive authorization policy is registered;
this policy allows all access. If permissive is false, a
nonpermissive authorization policy is registered; this
policy denies all access.

The behavior of the registered authentication policy
depends on the values provided for the userid and
groupids argument. The authentication policy will return
the userid identifier implied by the userid argument and
the group ids implied by the groupids argument when the
pyramid.security.authenticated_userid() or
pyramid.security.effective_principals() APIs are
used.

This function is most useful when testing code that uses
the APIs named pyramid.security.has_permission(),
pyramid.security.authenticated_userid(),
pyramid.security.effective_principals(), and
pyramid.security.principals_allowed_by_permission().

	
testing_resources(resources)

	Unit/integration testing helper: registers a dictionary of
resource objects that can be resolved via the
pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with
a path as one of its arguments. If the dictionary you
register when calling this method contains that path as a
string key (e.g. /foo/bar or foo/bar), the
corresponding value will be returned to find_resource (and
thus to your code) when
pyramid.traversal.find_resource() is called with an
equivalent path string or tuple.

	
testing_add_subscriber(*arg, **kw)

	Unit/integration testing helper: Registers a
subscriber which listens for events of the type
event_iface. This method returns a list object which is
appended to by the subscriber whenever an event is captured.

When an event is dispatched that matches the value implied by
the event_iface argument, that event will be appended to
the list. You can then compare the values in the list to
expected event notifications. This method is useful when
testing code that wants to call
pyramid.registry.Registry.notify(),
zope.component.event.dispatch() or
zope.component.event.objectEventNotify().

The default value of event_iface (None) implies a
subscriber registered for any kind of event.

	
testing_add_renderer(path, renderer=None)

	Unit/integration testing helper: register a renderer at
path (usually a relative filename ala templates/foo.pt
or an asset specification) and return the renderer object.
If the renderer argument is None, a ‘dummy’ renderer will
be used. This function is useful when testing code that calls
the pyramid.renderers.render() function or
pyramid.renderers.render_to_response() function or
any other render_* or get_* API of the
pyramid.renderers module.

Note that calling this method for with a path argument
representing a renderer factory type (e.g. for foo.pt
usually implies the chameleon_zpt renderer factory)
clobbers any existing renderer factory registered for that
type.

Note

This method is also available under the alias
testing_add_template (an older name for it).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.events

Functions

	
subscriber(*ifaces)

	Decorator activated via a scan which treats the
function being decorated as an event subscriber for the set of
interfaces passed as *ifaces to the decorator constructor.

For example:

from pyramid.events import NewRequest
from pyramid.events import subscriber

@subscriber(NewRequest)
def mysubscriber(event):
 event.request.foo = 1

More than one event type can be passed as a construtor argument:

from pyramid.events import NewRequest, NewResponse
from pyramid.events import subscriber

@subscriber(NewRequest, NewResponse)
def mysubscriber(event):
 print event

When the subscriber decorator is used without passing an arguments,
the function it decorates is called for every event sent:

from pyramid.events import subscriber

@subscriber()
def mysubscriber(event):
 print event

This method will have no effect until a scan is performed
against the package or module which contains it, ala:

from pyramid.config import Configurator
config = Configurator()
config.scan('somepackage_containing_subscribers')

Event Types

	
class ApplicationCreated(app)

	An instance of this class is emitted as an event when
the pyramid.config.Configurator.make_wsgi_app() is
called. The instance has an attribute, app, which is an
instance of the router that will handle WSGI requests.
This class implements the
pyramid.interfaces.IApplicationCreated interface.

Note

For backwards compatibility purposes, this class can
also be imported as
pyramid.events.WSGIApplicationCreatedEvent. This
was the name of the event class before Pyramid 1.0.

	
class NewRequest(request)

	An instance of this class is emitted as an event
whenever Pyramid begins to process a new request. The
even instance has an attribute, request, which is a
request object. This event class implements the
pyramid.interfaces.INewRequest interface.

	
class ContextFound(request)

	An instance of this class is emitted as an event after
the Pyramid router finds a context
object (after it performs traversal) but before any view code is
executed. The instance has an attribute, request, which is
the request object generated by Pyramid.

Notably, the request object will have an attribute named
context, which is the context that will be provided to the
view which will eventually be called, as well as other attributes
attached by context-finding code.

This class implements the
pyramid.interfaces.IContextFound interface.

Note

As of Pyramid 1.0, for backwards compatibility
purposes, this event may also be imported as
pyramid.events.AfterTraversal.

	
class NewResponse(request, response)

	An instance of this class is emitted as an event
whenever any Pyramid view or exception
view returns a response.

The instance has two attributes:request, which is the request
which caused the response, and response, which is the response
object returned by a view or renderer.

If the response was generated by an exception view,
the request will have an attribute named exception, which is
the exception object which caused the exception view to be
executed. If the response was generated by a ‘normal’ view, the
request will not have this attribute.

This event will not be generated if a response cannot be created
due to an exception that is not caught by an exception view (no
response is created under this circumstace).

This class implements the
pyramid.interfaces.INewResponse interface.

Note

Postprocessing a response is usually better handled in a WSGI
middleware component than in subscriber code that is
called by a pyramid.interfaces.INewResponse event.
The pyramid.interfaces.INewResponse event exists
almost purely for symmetry with the
pyramid.interfaces.INewRequest event.

	
class BeforeRender(system)

	
	
get(k, default=None)

	Return the value for key k from the renderer globals
dictionary, or the default if no such value exists.

	
update(d)

	Update the renderer globals dictionary with another dictionary
d. If any of the key names in the source dictionary already exist
in the target dictionary, a KeyError will be raised

See Using Events for more information about how to register
code which subscribes to these events.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.exceptions

	
class Forbidden(message='')

	Raise this exception within view code to immediately
return the forbidden view to the invoking user. Usually
this is a basic 401 page, but the forbidden view can be
customized as necessary. See Changing the Forbidden View.

This exception’s constructor accepts a single positional argument, which
should be a string. The value of this string will be placed onto the
request by the router as the exception_message attribute, for
availability to the Forbidden View.

	
class NotFound(message='')

	Raise this exception within view code to immediately
return the Not Found view to the invoking user. Usually
this is a basic 404 page, but the Not Found view can be
customized as necessary. See Changing the Not Found View.

This exception’s constructor accepts a single positional argument, which
should be a string. The value of this string will be placed into the WSGI
environment by the router as the exception_message attribute, for
availability to the Not Found View.

	
class ConfigurationError

	Raised when inappropriate input values are supplied to an API
method of a Configurator

	
class URLDecodeError

	This exception is raised when Pyramid cannot
successfully decode a URL or a URL path segment. This exception
it behaves just like the Python builtin
UnicodeDecodeError. It is a subclass of the builtin
UnicodeDecodeError exception only for identity purposes,
mostly so an exception view can be registered when a URL cannot be
decoded.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.httpexceptions

HTTP Exceptions.

HTTP Exceptions can be returned from handlers and views (they are
valid Response objects).

All HTTP exceptions are sub-classes of HTTPException, with additional
sub-classes for each of the major types of HTTP response. For example,
all 200-class HTTP exceptions sub-class HTTPOk, which sub-classes
HTTPException.

A status_map dict is also provided, which allows for key based access
to exception objects by the HTTP status code.

The exceptions are ordered into a class hierarchy based on status code
divisions to allow for capturing of various types of HTTP exceptions
as well:

Exception
 HTTPException
 HTTPOk
 * 200 - HTTPOk
 * 201 - HTTPCreated
 * 202 - HTTPAccepted
 * 203 - HTTPNonAuthoritativeInformation
 * 204 - HTTPNoContent
 * 205 - HTTPResetContent
 * 206 - HTTPPartialContent
 HTTPRedirection
 * 300 - HTTPMultipleChoices
 * 301 - HTTPMovedPermanently
 * 302 - HTTPFound
 * 303 - HTTPSeeOther
 * 304 - HTTPNotModified
 * 305 - HTTPUseProxy
 * 306 - Unused (not implemented, obviously)
 * 307 - HTTPTemporaryRedirect
 HTTPError
 HTTPClientError
 * 400 - HTTPBadRequest
 * 401 - HTTPUnauthorized
 * 402 - HTTPPaymentRequired
 * 403 - HTTPForbidden
 * 404 - HTTPNotFound
 * 405 - HTTPMethodNotAllowed
 * 406 - HTTPNotAcceptable
 * 407 - HTTPProxyAuthenticationRequired
 * 408 - HTTPRequestTimeout
 * 409 - HTTPConflict
 * 410 - HTTPGone
 * 411 - HTTPLengthRequired
 * 412 - HTTPPreconditionFailed
 * 413 - HTTPRequestEntityTooLarge
 * 414 - HTTPRequestURITooLong
 * 415 - HTTPUnsupportedMediaType
 * 416 - HTTPRequestRangeNotSatisfiable
 * 417 - HTTPExpectationFailed
 HTTPServerError
 * 500 - HTTPInternalServerError
 * 501 - HTTPNotImplemented
 * 502 - HTTPBadGateway
 * 503 - HTTPServiceUnavailable
 * 504 - HTTPGatewayTimeout
 * 505 - HTTPVersionNotSupported

	
status_map

	A mapping of integer status code to exception class (eg. the
integer “401” maps to
pyramid.httpexceptions.HTTPUnauthorized).

	
class HTTPException(message, wsgi_response)

	Exception used on pre-Python-2.5, where new-style classes cannot be used as
an exception.

	
class HTTPOk(detail=None, headers=None, comment=None, body_template=None, **kw)

	Base class for the 200’s status code (successful responses)

	
class HTTPRedirection(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for 300’s status code (redirections)

This is an abstract base class for 3xx redirection. It indicates
that further action needs to be taken by the user agent in order
to fulfill the request. It does not necessarly signal an error
condition.

	
class HTTPError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for status codes in the 400’s and 500’s

This is an exception which indicates that an error has occurred,
and that any work in progress should not be committed. These are
typically results in the 400’s and 500’s.

	
class HTTPClientError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for the 400’s, where the client is in error

This is an error condition in which the client is presumed to be
in-error. This is an expected problem, and thus is not considered
a bug. A server-side traceback is not warranted. Unless specialized,
this is a ‘400 Bad Request’

	
class HTTPServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

	base class for the 500’s, where the server is in-error

This is an error condition in which the server is presumed to be
in-error. This is usually unexpected, and thus requires a traceback;
ideally, opening a support ticket for the customer. Unless specialized,
this is a ‘500 Internal Server Error’

	
class HTTPCreated(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPAccepted(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPNonAuthoritativeInformation(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPNoContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPResetContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPPartialContent(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPMultipleChoices(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPMovedPermanently(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPFound(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPSeeOther(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPNotModified(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPUseProxy(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPTemporaryRedirect(detail=None, headers=None, comment=None, body_template=None, location=None, add_slash=False)

	

	
class HTTPBadRequest(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPUnauthorized(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPPaymentRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPForbidden(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPNotFound(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPMethodNotAllowed(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPNotAcceptable(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPProxyAuthenticationRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPRequestTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPConflict(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPGone(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPLengthRequired(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPPreconditionFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPRequestEntityTooLarge(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPRequestURITooLong(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPUnsupportedMediaType(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPRequestRangeNotSatisfiable(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPExpectationFailed(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPInternalServerError(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPNotImplemented(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPBadGateway(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPServiceUnavailable(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPGatewayTimeout(detail=None, headers=None, comment=None, body_template=None, **kw)

	

	
class HTTPVersionNotSupported(detail=None, headers=None, comment=None, body_template=None, **kw)

	

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.i18n

	
class TranslationString

	The constructor for a translation string. A translation
string is a Unicode-like object that has some extra metadata.

This constructor accepts one required argument named msgid.
msgid must be the message identifier for the
translation string. It must be a unicode object or a str
object encoded in the default system encoding.

Optional keyword arguments to this object’s constructor include
domain, default, and mapping.

domain represents the translation domain. By default,
the translation domain is None, indicating that this
translation string is associated with the default translation
domain (usually messages).

default represents an explicit default text for this
translation string. Default text appears when the translation
string cannot be translated. Usually, the msgid of a
translation string serves double duty as as its default text.
However, using this option you can provide a different default
text for this translation string. This feature is useful when the
default of a translation string is too complicated or too long to
be used as a message identifier. If default is provided, it
must be a unicode object or a str object encoded in the
default system encoding (usually means ASCII). If default is
None (its default value), the msgid value used by this
translation string will be assumed to be the value of default.

mapping, if supplied, must be a dictionary-like object which
represents the replacement values for any translation
string replacement marker instances found within the msgid
(or default) value of this translation string.

After a translation string is constructed, it behaves like most
other unicode objects; its msgid value will be displayed
when it is treated like a unicode object. Only when its
ugettext method is called will it be translated.

Its default value is available as the default attribute of the
object, its translation domain is available as the
domain attribute, and the mapping is available as the
mapping attribute. The object otherwise behaves much like a
Unicode string.

	
class TranslationStringFactory

	Create a factory which will generate translation strings
without requiring that each call to the factory be passed a
domain value. A single argument is passed to this class’
constructor: domain. This value will be used as the
domain values of translationstring.TranslationString
objects generated by the __call__ of this class. The
msgid, mapping, and default values provided to the
__call__ method of an instance of this class have the meaning
as described by the constructor of the
translationstring.TranslationString

	
class Localizer(locale_name, translations)

	
	An object providing translation and pluralizations related to

	the current request’s locale name. A
pyramid.i18n.Localizer object is created using the
pyramid.i18n.get_localizer() function.

	
locale_name

	The locale name for this localizer (e.g. en or en_US).

	
pluralize(singular, plural, n, domain=None, mapping=None)

	Return a Unicode string translation by using two
message identifier objects as a singular/plural pair
and an n value representing the number that appears in the
message using gettext plural forms support. The singular
and plural objects passed may be translation strings or
unicode strings. n represents the number of elements.
domain is the translation domain to use to do the
pluralization, and mapping is the interpolation mapping
that should be used on the result. Note that if the objects
passed are translation strings, their domains and mappings are
ignored. The domain and mapping arguments must be used
instead. If the domain is not supplied, a default domain
is used (usually messages).

Example:

num = 1
translated = localizer.pluralize('Add ${num} item',
 'Add ${num} items',
 num,
 mapping={'num':num})

	
translate(tstring, domain=None, mapping=None)

	Translate a translation string to the current language
and interpolate any replacement markers in the result. The
translate method accepts three arguments: tstring
(required), domain (optional) and mapping (optional).
When called, it will translate the tstring translation
string to a unicode object using the current locale. If
the current locale could not be determined, the result of
interpolation of the default value is returned. The optional
domain argument can be used to specify or override the
domain of the tstring (useful when tstring is a normal
string rather than a translation string). The optional
mapping argument can specify or override the tstring
interpolation mapping, useful when the tstring argument is
a simple string instead of a translation string.

Example:

from pyramid.18n import TranslationString
ts = TranslationString('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})
translated = localizer.translate(ts)

Example:

translated = localizer.translate('Add ${item}', domain='mypackage',
 mapping={'item':'Item'})

	
get_localizer(request)

	Retrieve a pyramid.i18n.Localizer object
corresponding to the current request’s locale name.

	
negotiate_locale_name(request)

	Negotiate and return the locale name associated with
the current request (never cached).

	
get_locale_name(request)

	Return the locale name associated with the current
request (possibly cached).

	
default_locale_negotiator(request)

	The default locale negotiator. Returns a locale name
or None.

	First, the negotiator looks for the _LOCALE_ attribute of
the request object (possibly set by a view or a listener for an
event).

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

	Finally, the negotiator returns None if the locale could not
be determined via any of the previous checks (when a locale
negotiator returns None, it signifies that the
default locale name should be used.)

See Internationalization and Localization for more information about using
Pyramid internationalization and localization services within
an application.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.interfaces

Event-Related Interfaces

	
interface IApplicationCreated

	Event issued when the
pyramid.config.Configurator.make_wsgi_app() method
is called. See the documentation attached to
pyramid.events.ApplicationCreated for more
information.

Note

For backwards compatibility with Pyramid
versions before 1.0, this interface can also be imported as
pyramid.interfaces.IWSGIApplicationCreatedEvent.

	
app

	Created application

	
interface INewRequest

	An event type that is emitted whenever Pyramid
begins to process a new request. See the documentation attached
to pyramid.events.NewRequest for more information.

	
request

	The request object

	
interface IContextFound

	An event type that is emitted after Pyramid finds a
context object but before it calls any view code. See the
documentation attached to pyramid.events.ContextFound
for more information.

Note

For backwards compatibility with versions of
Pyramid before 1.0, this event interface can also be
imported as pyramid.interfaces.IAfterTraversal.

	
request

	The request object

	
interface INewResponse

	An event type that is emitted whenever any Pyramid
view returns a response. See the
documentation attached to pyramid.events.NewResponse
for more information.

	
request

	The request object

	
response

	The response object

	
interface IBeforeRender

	Subscribers to this event may introspect the and modify the set of
renderer globals before they are passed to a renderer.
This event object iself has a dictionary-like interface that can be used
for this purpose. For example:

from repoze.events import subscriber
from pyramid.interfaces import IBeforeRender

@subscriber(IBeforeRender)
def add_global(event):
 event['mykey'] = 'foo'

See also Using The Before Render Event.

	
__getitem__(k)

	Return the value for key k from the renderer globals
dictionary.

	
__contains__(k)

	Return True if k exists in the renderer globals
dictionary.

	
get(k, default=None)

	Return the value for key k from the renderer globals
dictionary, or the default if no such value exists.

	
update(d)

	Update the renderer globals dictionary with another dictionary
d. If any of the key names in the source dictionary already exist
in the target dictionary, a KeyError will be raised

	
__setitem__(name, value)

	Set a name/value pair into the dictionary which is passed to a
renderer as the renderer globals dictionary. If the name already
exists in the target dictionary, a KeyError will be raised.

Other Interfaces

	
interface IExceptionResponse

	Extends: pyramid.interfaces.IException, pyramid.interfaces.IResponse

An interface representing a WSGI response which is also an
exception object. Register an exception view using this interface
as a context to apply the registered view for all exception
types raised by Pyramid internally
(pyramid.exceptions.NotFound and
pyramid.exceptions.Forbidden).

	
interface IRoute

	Interface representing the type of object returned from
IRoutesMapper.get_route

	
name

	The route name

	
pattern

	The route pattern

	
factory

	The root factory used by the Pyramid router when this route matches (or None)

	
generate(kw)

	Generate a URL based on filling in the dynamic segment markers
in the pattern using the kw dictionary provided.

	
pregenerator

	This attribute should either be None or a callable object implementing the IRoutePregenerator interface

	
predicates

	A sequence of route predicate objects used to determine if a request matches this route or not or not after basic pattern matching has been completed.

	
match(path)

	If the path passed to this function can be matched by the
pattern of this route, return a dictionary (the
‘matchdict’), which will contain keys representing the dynamic
segment markers in the pattern mapped to values extracted from
the provided path.

If the path passed to this function cannot be matched by
the pattern of this route, return None.

	
interface IRoutePregenerator

	
	
__call__(request, elements, kw)

	A pregenerator is a function associated by a developer
with a route. The pregenerator for a route is called
by pyramid.url.route_url() in order to adjust the set
of arguments passed to it by the user for special purposes,
such as Pylons ‘subdomain’ support. It will influence the URL
returned by route_url.

A pregenerator should return a two-tuple of (elements, kw)
after examining the originals passed to this function, which
are the arguments (request, elements, kw). The simplest
pregenerator is:

def pregenerator(request, elements, kw):
 return elements, kw

You can employ a pregenerator by passing a pregenerator
argument to the
pyramid.config.Configurator.add_route()
function.

	
interface ISession

	An interface representing a session (a web session object,
usually accessed via request.session.

Keys and values of a session must be pickleable.

	
invalidate()

	Invalidate the session. The action caused by
invalidate is implementation-dependent, but it should have
the effect of completely dissociating any data stored in the
session with the current request. It might set response
values (such as one which clears a cookie), or it might not.

	
popitem()

	remove and return some (key, value) pair as a
2-tuple; but raise KeyError if mapping is empty

	
pop(k, *args)

	remove specified key and return the corresponding value
*args may contain a single default value, or may not be supplied.
If key is not found, default is returned if given, otherwise
KeyError is raised

	
__contains__(key)

	Return true if a key exists in the mapping.

	
itervalues()

	iterate over values

	
new

	Boolean attribute. If True, the session is new.

	
__len__()

	Return the number of items in the session.

	
__getitem__(key)

	Get a value for a key

A KeyError is raised if there is no value for the key.

	
get(key, default=None)

	Get a value for a key

The default is returned if there is no value for the key.

	
keys()

	Return the keys of the mapping object.

	
update(d)

	Update D from E: for k in E.keys(): D[k] = E[k]

	
__setitem__(key, value)

	Set a new item in the mapping.

	
iteritems()

	iterate over items

	
iterkeys()

	iterate over keys; equivalent to __iter__

	
__delitem__(key)

	Delete a value from the mapping using the key.

A KeyError is raised if there is no value for the key.

	
setdefault(key, default=None)

	D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D

	
created

	Integer representing Epoch time when created.

	
items()

	Return the items of the mapping object.

	
clear()

	delete all items

	
changed()

	Mark the session as changed. A user of a session should
call this method after he or she mutates a mutable object that
is a value of the session (it should not be required after
mutating the session itself). For example, if the user has
stored a dictionary in the session under the key foo, and
he or she does session['foo'] = {}, changed() needn’t
be called. However, if subsequently he or she does
session['foo']['a'] = 1, changed() must be called for
the sessioning machinery to notice the mutation of the
internal dictionary.

	
__iter__()

	Return an iterator for the keys of the mapping object.

	
values()

	Return the values of the mapping object.

	
interface ISessionFactory

	An interface representing a factory which accepts a request object and
returns an ISession object

	
__call__(request)

	Return an ISession object

	
interface IRendererInfo

	An object implementing this interface is passed to every
renderer factory constructor as its only argument (conventionally
named info)

	
name

	The value passed by the user as the renderer name

	
package

	The “current package” when the renderer configuration statement was found

	
settings

	The ISettings dictionary related to the current app

	
registry

	The “current” application registry when the renderer was created

	
type

	The renderer type name

	
interface ITemplateRenderer

	Extends: pyramid.interfaces.IRenderer

	
implementation()

	Return the object that the underlying templating system
uses to render the template; it is typically a callable that
accepts arbitrary keyword arguments and returns a string or
unicode object

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.location

	
lineage(resource)

	Return a generator representing the lineage of the
resource object implied by the resource argument. The
generator first returns resource unconditionally. Then, if
resource supplies a __parent__ attribute, return the object
represented by resource.__parent__. If that object has a
__parent__ attribute, return that object’s parent, and so on,
until the object being inspected either has no __parent__
attribute or which has a __parent__ attribute of None.
For example, if the object tree is:

thing1 = Thing()
thing2 = Thing()
thing2.__parent__ = thing1

Calling lineage(thing2) will return a generator. When we turn
it into a list, we will get:

list(lineage(thing2))
[<Thing object at thing2>, <Thing object at thing1>]

	
inside(resource1, resource2)

	Is resource1 ‘inside’ resource2? Return True if so, else
False.

resource1 is ‘inside’ resource2 if resource2 is a
lineage ancestor of resource1. It is a lineage ancestor
if its parent (or one of its parent’s parents, etc.) is an
ancestor.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.paster

	
get_app(config_file, name)

	Return the WSGI application named name in the PasteDeploy
config file config_file.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.registry

	
class Registry(name='', bases=())

	A registry object is an application registry. The existence
of a registry implementation detail of pyramid. It is used by the
framework itself to perform mappings of URLs to view callables, as well
as servicing other various duties. Despite being an implementation detail
of the framework, it has a number of attributes that may be useful within
application code.

For information about the purpose and usage of the application registry,
see Using the Zope Component Architecture in Pyramid.

The application registry is usually accessed as request.registry in
application code.

	
settings

	The deployment settings object. See Deployment Settings
for information.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.renderers

	
get_renderer(renderer_name, package=None)

	Return the renderer object for the renderer named as
renderer_name.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package supplied as package with the relative
asset specification supplied as renderer_name. If you do
not supply a package (or package is None) the package
name of the caller of this function will be used as the package.

	
render(renderer_name, value, request=None, package=None)

	Using the renderer specified as renderer_name (a template
or a static renderer) render the value (or set of values) present
in value. Return the result of the renderer’s __call__
method (usually a string or Unicode).

If the renderer name refers to a file on disk (such as when the
renderer is a template), it’s usually best to supply the name as a
asset specification
(e.g. packagename:path/to/template.pt).

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer path
will be converted to an absolute asset specification by
combining the package supplied as package with the relative
asset specification supplied as renderer_name. If you do
not supply a package (or package is None) the package
name of the caller of this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The ‘system’ values supplied to the renderer will include a basic
set of top-level system names, such as request, context,
and renderer_name. If renderer globals have been
specified, these will also be used to agument the value.

Supply a request parameter in order to provide the renderer
with the most correct ‘system’ values (request and context
in particular).

	
render_to_response(renderer_name, value, request=None, package=None)

	Using the renderer specified as renderer_name (a template
or a static renderer) render the value (or set of values) using
the result of the renderer’s __call__ method (usually a string
or Unicode) as the response body.

If the renderer name refers to a file on disk (such as when the
renderer is a template), it’s usually best to supply the name as a
asset specification.

You may supply a relative asset spec as renderer_name. If
the package argument is supplied, a relative renderer name
will be converted to an absolute asset specification by
combining the package supplied as package with the relative
asset specification supplied as renderer_name. If you do
not supply a package (or package is None) the package
name of the caller of this function will be used as the package.

The value provided will be supplied as the input to the
renderer. Usually, for template renderings, this should be a
dictionary. For other renderers, this will need to be whatever
sort of value the renderer expects.

The ‘system’ values supplied to the renderer will include a basic
set of top-level system names, such as request, context,
and renderer_name. If renderer globals have been
specified, these will also be used to agument the value.

Supply a request parameter in order to provide the renderer
with the most correct ‘system’ values (request and context
in particular).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.request

	
class Request(environ=None, environ_getter=None, charset=(No Default), unicode_errors=(No Default), decode_param_names=(No Default), **kw)

	A subclass of the WebOb Request class. An instance of
this class is created by the router and is provided to a
view callable (and to other subsystems) as the request
argument.

The documentation below (save for the add_response_callback and
‘’add_finished_callback`` methods, which are defined in this subclass
itself, and the attributes context, registry, root,
subpath, traversed, view_name, virtual_root , and
virtual_root_path, each of which is added to the request by the
router at request ingress time) are autogenerated from the WebOb
source code used when this documentation was generated.

Due to technical constraints, we can’t yet display the WebOb
version number from which this documentation is autogenerated, but
it will be the ‘prevailing WebOb version’ at the time of the
release of this Pyramid version. See
http://http://pythonpaste.org/webob/ for further information.

	
context

	The context will be available as the context
attribute of the request object. It will be the context
object implied by the current request. See
Traversal for information about context objects.

	
registry

	The application registry will be available as the
registry attribute of the request object. See
Using the Zope Component Architecture in Pyramid for more information about the application
registry.

	
root

	The root object will be available as the root
attribute of the request object. It will be the resource
object at which traversal started (the root). See
Traversal for information about root objects.

	
subpath

	The traversal subpath will be available as the
subpath attribute of the request object. It will
be a sequence containing zero or more elements (which will be
Unicode objects). See Traversal for information
about the subpath.

	
traversed

	The “traversal path” will be available as the traversed
attribute of the request object. It will be a sequence
representing the ordered set of names that were used to
traverse to the context, not including the view name or
subpath. If there is a virtual root associated with the
request, the virtual root path is included within the traversal
path. See Traversal for more information.

	
view_name

	The view name will be available as the view_name
attribute of the request object. It will be a single
string (possibly the empty string if we’re rendering a default
view). See Traversal for information about view
names.

	
virtual_root

	The virtual root will be available as the
virtual_root attribute of the request object. It
will be the virtual root object implied by the current request.
See Virtual Hosting for more information about virtual
roots.

	
virtual_root_path

	The virtual root path will be available as the
virtual_root_path attribute of the request object.
It will be a sequence representing the ordered set of names
that were used to traverse to the virtual root object. See
Virtual Hosting for more information about virtual
roots.

	
exception

	If an exception was raised by a root factory or a
view callable, or at various other points where
Pyramid executes user-defined code during the
processing of a request, the exception object which was caught
will be available as the exception attribute of the request
within a exception view, a response callback or a
finished callback. If no exception occurred, the value
of request.exception will be None within response and
finished callbacks.

	
session

	If a session factory has been configured, this attribute
will represent the current user’s session object. If a
session factory has not been configured, requesting the
request.session attribute will cause a
pyramid.exceptions.ConfigurationError to be raised.

	
tmpl_context

	The template context for Pylons-style applications.

	
matchdict

	If a route has matched during this request, this attribute will
be a dictionary containing the values matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matchdict.

	
matched_route

	If a route has matched during this request, this attribute will
be an obect representing the route matched by the URL pattern
associated with the route. If a route has not matched during this
request, the value of this attribute will be None. See
The Matched Route.

	
GET

	Like .str_GET, but may decode values and keys

	
POST

	Like .str_POST, but may decode values and keys

	
ResponseClass

	alias of Response

	
accept

	Gets and sets the ‘HTTP_ACCEPT’ key in the environment. For more information on Accept see section 14.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1]. Converts it as a MIME Accept.

	
accept_charset

	Gets and sets the ‘HTTP_ACCEPT_CHARSET’ key in the environment. For more information on Accept-Charset see section 14.2 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2]. Converts it as a accept header.

	
accept_encoding

	Gets and sets the ‘HTTP_ACCEPT_ENCODING’ key in the environment. For more information on Accept-Encoding see section 14.3 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3]. Converts it as a accept header.

	
accept_language

	Gets and sets the ‘HTTP_ACCEPT_LANGUAGE’ key in the environment. For more information on Accept-Language see section 14.4 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4]. Converts it as a accept header.

	
add_finished_callback(callback)

	Add a callback to the set of callbacks to be called
unconditionally by the router at the very end of
request processing.

callback is a callable which accepts a single positional
parameter: request. For example:

	1
2
3
4
5
6
7
8
9

	import transaction

def commit_callback(request):
 '''commit or abort the transaction associated with request'''
 if request.exception is not None:
 transaction.abort()
 else:
 transaction.commit()
request.add_finished_callback(commit_callback)

Finished callbacks are called in the order they’re added (
first- to most-recently- added). Finished callbacks (unlike
response callbacks) are always called, even if an exception
happens in application code that prevents a response from
being generated.

The set of finished callbacks associated with a request are
called very late in the processing of that request; they are
essentially the last thing called by the router. They
are called after response processing has already occurred in a
top-level finally: block within the router request
processing code. As a result, mutations performed to the
request provided to a finished callback will have no
meaningful effect, because response processing will have
already occurred, and the request’s scope will expire almost
immediately after all finished callbacks have been processed.

Errors raised by finished callbacks are not handled specially.
They will be propagated to the caller of the Pyramid
router application.

See also: Using Finished Callbacks.

	
add_response_callback(callback)

	Add a callback to the set of callbacks to be called by the
router at a point after a response object is
successfully created. Pyramid does not have a
global response object: this functionality allows an
application to register an action to be performed against the
response once one is created.

A ‘callback’ is a callable which accepts two positional
parameters: request and response. For example:

	1
2
3
4

	def cache_callback(request, response):
 'Set the cache_control max_age for the response'
 response.cache_control.max_age = 360
request.add_response_callback(cache_callback)

Response callbacks are called in the order they’re added
(first-to-most-recently-added). No response callback is
called if an exception happens in application code, or if the
response object returned by view code is invalid.

All response callbacks are called after the
pyramid.events.NewResponse event is sent.

Errors raised by callbacks are not handled specially. They
will be propagated to the caller of the Pyramid
router application.

See also: Using Response Callbacks.

	
application_url

	The URL including SCRIPT_NAME (no PATH_INFO or query string)

	
authorization

	Gets and sets the ‘HTTP_AUTHORIZATION’ key in the environment. For more information on Authorization see section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]. Converts it as a <function parse_auth at 0x3013f50> and <function serialize_auth at 0x3015050>.

	
classmethod blank(path, environ=None, base_url=None, headers=None, POST=None, **kw)

	Create a blank request environ (and Request wrapper) with the
given path (path should be urlencoded), and any keys from
environ.

The path will become path_info, with any query string split
off and used.

All necessary keys will be added to the environ, but the
values you pass in will take precedence. If you pass in
base_url then wsgi.url_scheme, HTTP_HOST, and SCRIPT_NAME will
be filled in from that value.

Any extra keyword will be passed to __init__ (e.g.,
decode_param_names).

	
body

	Return the content of the request body.

	
body_file

	Access the body of the request (wsgi.input) as a file-like
object.

If you set this value, CONTENT_LENGTH will also be updated
(either set to -1, 0 if you delete the attribute, or if you
set the attribute to a string then the length of the string).

	
cache_control

	Get/set/modify the Cache-Control header (section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
call_application(application, catch_exc_info=False)

	Call the given WSGI application, returning (status_string,
headerlist, app_iter)

Be sure to call app_iter.close() if it’s there.

If catch_exc_info is true, then returns (status_string,
headerlist, app_iter, exc_info), where the fourth item may
be None, but won’t be if there was an exception. If you don’t
do this and there was an exception, the exception will be
raised directly.

	
charset

	Get the charset of the request.

If the request was sent with a charset parameter on the
Content-Type, that will be used. Otherwise if there is a
default charset (set during construction, or as a class
attribute) that will be returned. Otherwise None.

Setting this property after request instantiation will always
update Content-Type. Deleting the property updates the
Content-Type to remove any charset parameter (if none exists,
then deleting the property will do nothing, and there will be
no error).

	
content_length

	Gets and sets the ‘CONTENT_LENGTH’ key in the environment. For more information on CONTENT_LENGTH see section 14.13 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.13]. Converts it as a int.

	
content_type

	Return the content type, but leaving off any parameters (like
charset, but also things like the type in application/atom+xml;
type=entry)

If you set this property, you can include parameters, or if
you don’t include any parameters in the value then existing
parameters will be preserved.

	
cookies

	Like .str_cookies, but may decode values and keys

	
copy()

	Copy the request and environment object.

This only does a shallow copy, except of wsgi.input

	
copy_body()

	Copies the body, in cases where it might be shared with
another request object and that is not desired.

This copies the body in-place, either into a StringIO object
or a temporary file.

	
copy_get()

	Copies the request and environment object, but turning this request
into a GET along the way. If this was a POST request (or any other verb)
then it becomes GET, and the request body is thrown away.

	
date

	Gets and sets the ‘HTTP_DATE’ key in the environment. For more information on Date see section 14.8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8]. Converts it as a HTTP date.

	
classmethod from_file(fp)

	Reads a request from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the request, not the end of the
file.

This reads the request as represented by str(req); it may
not read every valid HTTP request properly.

	
get_response(application, catch_exc_info=False)

	Like .call_application(application), except returns a
response object with .status, .headers, and .body
attributes.

This will use self.ResponseClass to figure out the class
of the response object to return.

	
headers

	All the request headers as a case-insensitive dictionary-like
object.

	
host

	Host name provided in HTTP_HOST, with fall-back to SERVER_NAME

	
host_url

	The URL through the host (no path)

	
if_match

	Gets and sets the ‘HTTP_IF_MATCH’ key in the environment. For more information on If-Match see section 14.24 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24]. Converts it as a Etag.

	
if_modified_since

	Gets and sets the ‘HTTP_IF_MODIFIED_SINCE’ key in the environment. For more information on If-Modified-Since see section 14.25 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25]. Converts it as a HTTP date.

	
if_none_match

	Gets and sets the ‘HTTP_IF_NONE_MATCH’ key in the environment. For more information on If-None-Match see section 14.26 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26]. Converts it as a Etag.

	
if_range

	Gets and sets the ‘HTTP_IF_RANGE’ key in the environment. For more information on If-Range see section 14.27 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.27]. Converts it as a IfRange object.

	
if_unmodified_since

	Gets and sets the ‘HTTP_IF_UNMODIFIED_SINCE’ key in the environment. For more information on If-Unmodified-Since see section 14.28 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.28]. Converts it as a HTTP date.

	
is_xhr

	Returns a boolean if X-Requested-With is present and XMLHttpRequest

Note: this isn’t set by every XMLHttpRequest request, it is
only set if you are using a Javascript library that sets it
(or you set the header yourself manually). Currently
Prototype and jQuery are known to set this header.

	
make_body_seekable()

	This forces environ['wsgi.input'] to be seekable. That
is, if it doesn’t have a seek method already, the content is
copied into a StringIO or temporary file.

The choice to copy to StringIO is made from
self.request_body_tempfile_limit

	
max_forwards

	Gets and sets the ‘HTTP_MAX_FORWARDS’ key in the environment. For more information on Max-Forwards see section 14.31 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.31]. Converts it as a int.

	
method

	Gets and sets the ‘REQUEST_METHOD’ key in the environment.

	
model_url(resource, *elements, **kw)

	Return the URL for the resource object named resource,
using *elements and **kw as modifiers.

This is a convenience method. The result of calling
pyramid.request.Request.resource_url() is the same as calling
pyramid.url.resource_url() with an explicit request parameter.

The pyramid.request.Request.resource_url() method calls the
pyramid.url.resource_url() function using the Request object as
the request argument. The resource, *elements and *kw
arguments passed to pyramid.request.Request.resource_url() are
passed through to pyramid.url.resource_url() unchanged and its
result is returned.

This call to pyramid.request.Request.resource_url():

request.resource_url(myresource)

Is completely equivalent to calling pyramid.url.resource_url()
like this:

from pyramid.url import resource_url
resource_url(resource, request)

Note

For backwards compatibility purposes, this method can also
be called as pyramid.request.Request.model_url().

	
params

	Like .str_params, but may decode values and keys

	
path

	The path of the request, without host or query string

	
path_info

	Gets and sets the ‘PATH_INFO’ key in the environment.

	
path_info_peek()

	Returns the next segment on PATH_INFO, or None if there is no
next segment. Doesn’t modify the environment.

	
path_info_pop(pattern=None)

	‘Pops’ off the next segment of PATH_INFO, pushing it onto
SCRIPT_NAME, and returning the popped segment. Returns None if
there is nothing left on PATH_INFO.

Does not return '' when there’s an empty segment (like
/path//path); these segments are just ignored.

Optional pattern argument is a regexp to match the return value
before returning. If there is no match, no changes are made to the
request and None is returned.

	
path_qs

	The path of the request, without host but with query string

	
path_url

	The URL including SCRIPT_NAME and PATH_INFO, but not QUERY_STRING

	
postvars

	Wraps a descriptor, with a deprecation warning or error

	
pragma

	Gets and sets the ‘HTTP_PRAGMA’ key in the environment. For more information on Pragma see section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32].

	
query_string

	Gets and sets the ‘QUERY_STRING’ key in the environment.

	
queryvars

	Wraps a descriptor, with a deprecation warning or error

	
range

	Gets and sets the ‘HTTP_RANGE’ key in the environment. For more information on Range see section 14.35 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35]. Converts it as a Range object.

	
referer

	Gets and sets the ‘HTTP_REFERER’ key in the environment. For more information on Referer see section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36].

	
referrer

	Gets and sets the ‘HTTP_REFERER’ key in the environment. For more information on Referer see section 14.36 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.36].

	
relative_url(other_url, to_application=False)

	Resolve other_url relative to the request URL.

If to_application is True, then resolve it relative to the
URL with only SCRIPT_NAME

	
remote_addr

	Gets and sets the ‘REMOTE_ADDR’ key in the environment.

	
remote_user

	Gets and sets the ‘REMOTE_USER’ key in the environment.

	
remove_conditional_headers(remove_encoding=True, remove_range=True, remove_match=True, remove_modified=True)

	Remove headers that make the request conditional.

These headers can cause the response to be 304 Not Modified,
which in some cases you may not want to be possible.

This does not remove headers like If-Match, which are used for
conflict detection.

	
resource_url(resource, *elements, **kw)

	Return the URL for the resource object named resource,
using *elements and **kw as modifiers.

This is a convenience method. The result of calling
pyramid.request.Request.resource_url() is the same as calling
pyramid.url.resource_url() with an explicit request parameter.

The pyramid.request.Request.resource_url() method calls the
pyramid.url.resource_url() function using the Request object as
the request argument. The resource, *elements and *kw
arguments passed to pyramid.request.Request.resource_url() are
passed through to pyramid.url.resource_url() unchanged and its
result is returned.

This call to pyramid.request.Request.resource_url():

request.resource_url(myresource)

Is completely equivalent to calling pyramid.url.resource_url()
like this:

from pyramid.url import resource_url
resource_url(resource, request)

Note

For backwards compatibility purposes, this method can also
be called as pyramid.request.Request.model_url().

	
route_path(route_name, *elements, **kw)

	Generates a path (aka a ‘relative URL’, a URL minus the host,
scheme, and port) for a named Pyramid
route configuration.

This is a convenience method. The result of calling
pyramid.request.Request.route_path() is the same as calling
pyramid.url.route_path() with an explicit request
parameter.

This method accepts the same arguments as
pyramid.request.Request.route_url() and performs the same duty.
It just omits the host, port, and scheme information in the return
value; only the path, query parameters, and anchor data are present
in the returned string.

The pyramid.request.Request.route_path() method calls the
pyramid.url.route_path() function using the Request object as
the request argument. The *elements and *kw arguments
passed to pyramid.request.Request.route_path() are passed
through to pyramid.url.route_path() unchanged and its result is
returned.

This call to pyramid.request.Request.route_path():

request.route_path('foobar')

Is completely equivalent to calling pyramid.url.route_path()
like this:

from pyramid.url import route_path
route_path('foobar', request)

See pyramid.url.route_path() for more information

	
route_url(route_name, *elements, **kw)

	Return the URL for the route named route_name, using
*elements and **kw as modifiers.

This is a convenience method. The result of calling
pyramid.request.Request.route_url() is the same as calling
pyramid.url.route_url() with an explicit request
parameter.

The pyramid.request.Request.route_url() method calls the
pyramid.url.route_url() function using the Request object as
the request argument. The route_name, *elements and
*kw arguments passed to pyramid.request.Request.route_url()
are passed through to pyramid.url.route_url() unchanged and its
result is returned.

This call to pyramid.request.Request.route_url():

request.route_url('route_name')

Is completely equivalent to calling pyramid.url.route_url()
like this:

from pyramid.url import route_url
route_url('route_name', request)

	
scheme

	Gets and sets the ‘wsgi.url_scheme’ key in the environment.

	
script_name

	Gets and sets the ‘SCRIPT_NAME’ key in the environment.

	
server_name

	Gets and sets the ‘SERVER_NAME’ key in the environment.

	
server_port

	Gets and sets the ‘SERVER_PORT’ key in the environment. Converts it as a int.

	
session

	Obtain the session object associated with this
request. If a session factory has not been registered
during application configuration, a
pyramid.exceptions.ConfigurationError will be raised

	
static_url(path, **kw)

	Generates a fully qualified URL for a static asset. The
asset must live within a location defined via the
pyramid.config.Configurator.add_static_view()
configuration declaration or the <static> ZCML directive
(see Serving Static Assets).

This is a convenience method. The result of calling
pyramid.request.Request.static_url() is the same as calling
pyramid.url.static_url() with an explicit request parameter.

The pyramid.request.Request.static_url() method calls the
pyramid.url.static_url() function using the Request object as
the request argument. The *kw arguments passed to
pyramid.request.Request.static_url() are passed through to
pyramid.url.static_url() unchanged and its result is returned.

This call to pyramid.request.Request.static_url():

request.static_url('mypackage:static/foo.css')

Is completely equivalent to calling pyramid.url.static_url()
like this:

from pyramid.url import static_url
static_url('mypackage:static/foo.css', request)

See pyramid.url.static_url() for more information

	
str_GET

	Return a MultiDict containing all the variables from the
QUERY_STRING.

	
str_POST

	Return a MultiDict containing all the variables from a form
request. Returns an empty dict-like object for non-form
requests.

Form requests are typically POST requests, however PUT requests
with an appropriate Content-Type are also supported.

	
str_cookies

	Return a plain dictionary of cookies as found in the request.

	
str_params

	A dictionary-like object containing both the parameters from
the query string and request body.

	
str_postvars

	Wraps a descriptor, with a deprecation warning or error

	
str_queryvars

	Wraps a descriptor, with a deprecation warning or error

	
tmpl_context

	Template context (for Pylons apps)

	
upath_info

	upath_property(‘PATH_INFO’)

	
url

	The full request URL, including QUERY_STRING

	
urlargs

	Return any positional variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
urlvars

	Return any named variables matched in the URL.

Takes values from environ['wsgiorg.routing_args'].
Systems like routes set this value.

	
uscript_name

	upath_property(‘SCRIPT_NAME’)

	
user_agent

	Gets and sets the ‘HTTP_USER_AGENT’ key in the environment. For more information on User-Agent see section 14.43 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.43].

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.response

	
class Response(body=None, status=None, headerlist=None, app_iter=None, request=None, content_type=None, conditional_response=None, **kw)

	Represents a WSGI response

	
RequestClass

	alias of Request

	
accept_ranges

	Gets and sets and deletes the Accept-Ranges header. For more information on Accept-Ranges see section 14.5 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.5].

	
age

	Gets and sets and deletes the Age header. For more information on Age see section 14.6 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.6]. Converts it as a int.

	
allow

	Gets and sets and deletes the Allow header. For more information on Allow see section 14.7 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.7]. Converts it as a list.

	
app_iter

	Returns the app_iter of the response.

If body was set, this will create an app_iter from that body
(a single-item list)

	
app_iter_range(start, stop)

	Return a new app_iter built from the response app_iter, that
serves up only the given start:stop range.

	
body

	The body of the response, as a str. This will read in the
entire app_iter if necessary.

	
body_file

	A file-like object that can be used to write to the
body. If you passed in a list app_iter, that app_iter will be
modified by writes.

	
cache_control

	Get/set/modify the Cache-Control header (section 14.9 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9])

	
charset

	Get/set the charset (in the Content-Type)

	
conditional_response_app(environ, start_response)

	Like the normal __call__ interface, but checks conditional headers:

	If-Modified-Since (304 Not Modified; only on GET, HEAD)

	If-None-Match (304 Not Modified; only on GET, HEAD)

	Range (406 Partial Content; only on GET, HEAD)

	
content_disposition

	Gets and sets and deletes the Content-Disposition header. For more information on Content-Disposition see section 19.5.1 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1].

	
content_encoding

	Gets and sets and deletes the Content-Encoding header. For more information on Content-Encoding see section 14.11 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11].

	
content_language

	Gets and sets and deletes the Content-Language header. For more information on Content-Language see section 14.12 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.12]. Converts it as a list.

	
content_length

	Gets and sets and deletes the Content-Length header. For more information on Content-Length see section 14.17 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17]. Converts it as a int.

	
content_location

	Gets and sets and deletes the Content-Location header. For more information on Content-Location see section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14].

	
content_md5

	Gets and sets and deletes the Content-MD5 header. For more information on Content-MD5 see section 14.14 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.14].

	
content_range

	Gets and sets and deletes the Content-Range header. For more information on Content-Range see section 14.16 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.16]. Converts it as a ContentRange object.

	
content_type

	Get/set the Content-Type header (or None), without the
charset or any parameters.

If you include parameters (or ; at all) when setting the
content_type, any existing parameters will be deleted;
otherwise they will be preserved.

	
content_type_params

	A dictionary of all the parameters in the content type.

(This is not a view, set to change, modifications of the dict would not be
applied otherwise)

	
copy()

	Makes a copy of the response

	
date

	Gets and sets and deletes the Date header. For more information on Date see section 14.18 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18]. Converts it as a HTTP date.

	
delete_cookie(key, path='/', domain=None)

	Delete a cookie from the client. Note that path and domain must match
how the cookie was originally set.

This sets the cookie to the empty string, and max_age=0 so
that it should expire immediately.

	
encode_content(encoding='gzip')

	Encode the content with the given encoding (only gzip and
identity are supported).

	
environ

	Get/set the request environ associated with this response, if
any.

	
etag

	Gets and sets and deletes the ETag header. For more information on ETag see section 14.19 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19]. Converts it as a Entity tag.

	
expires

	Gets and sets and deletes the Expires header. For more information on Expires see section 14.21 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.21]. Converts it as a HTTP date.

	
classmethod from_file(fp)

	Reads a response from a file-like object (it must implement
.read(size) and .readline()).

It will read up to the end of the response, not the end of the
file.

This reads the response as represented by str(resp); it
may not read every valid HTTP response properly. Responses
must have a Content-Length

	
headerlist

	The list of response headers

	
headers

	The headers in a dictionary-like object

	
last_modified

	Gets and sets and deletes the Last-Modified header. For more information on Last-Modified see section 14.29 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.29]. Converts it as a HTTP date.

	
location

	Gets and sets and deletes the Location header. For more information on Location see section 14.30 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.30].

	
md5_etag(body=None, set_content_md5=False)

	Generate an etag for the response object using an MD5 hash of
the body (the body parameter, or self.body if not given)

Sets self.etag
If set_content_md5 is True sets self.content_md5 as well

	
merge_cookies(resp)

	Merge the cookies that were set on this response with the
given resp object (which can be any WSGI application).

If the resp is a webob.Response object, then the
other object will be modified in-place.

	
pragma

	Gets and sets and deletes the Pragma header. For more information on Pragma see section 14.32 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32].

	
request

	Return the request associated with this response if any.

	
retry_after

	Gets and sets and deletes the Retry-After header. For more information on Retry-After see section 14.37 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37]. Converts it as a HTTP date or delta seconds.

	
server

	Gets and sets and deletes the Server header. For more information on Server see section 14.38 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.38].

	
set_cookie(key, value='', max_age=None, path='/', domain=None, secure=None, httponly=False, version=None, comment=None, expires=None, overwrite=False)

	Set (add) a cookie for the response

	
status

	The status string

	
status_code

	Wraps a descriptor, with a deprecation warning or error

	
status_int

	The status as an integer

	
ubody

	Alias for unicode_body

	
unicode_body

	Get/set the unicode value of the body (using the charset of the Content-Type)

	
unset_cookie(key, strict=True)

	Unset a cookie with the given name (remove it from the
response). If there are multiple cookies (e.g., two cookies
with the same name and different paths or domains), all such
cookies will be deleted.

	
vary

	Gets and sets and deletes the Vary header. For more information on Vary see section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44]. Converts it as a list.

	
www_authenticate

	Gets and sets and deletes the WWW-Authenticate header. For more information on WWW-Authenticate see section 14.47 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.47]. Converts it as a <function parse_auth at 0x2d5bf50> and <function serialize_auth at 0x2d5d050>.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.router

	
make_app(root_factory, package=None, filename='configure.zcml', settings=None)

	Return a Router object, representing a fully configured
Pyramid WSGI application.

Warning

Use of this function is deprecated as of
Pyramid 1.0. You should instead use a
pyramid.config.Configurator instance to
perform startup configuration as shown in
Application Configuration.

root_factory must be a callable that accepts a request
object and which returns a traversal root object. The traversal
root returned by the root factory is the default traversal root;
it can be overridden on a per-view basis. root_factory may be
None, in which case a ‘default default’ traversal root is
used.

package is a Python package or module representing the
application’s package. It is optional, defaulting to None.
package may be None. If package is None, the
filename passed or the value in the options dictionary
named configure_zcml must be a) absolute pathname to a
ZCML file that represents the application’s configuration
or b) a asset specification to a ZCML file in
the form dotted.package.name:relative/file/path.zcml.

filename is the filesystem path to a ZCML file (optionally
relative to the package path) that should be parsed to create the
application registry. It defaults to configure.zcml. It can
also be a ;term:asset specification in the form
dotted_package_name:relative/file/path.zcml. Note that if any
value for configure_zcml is passed within the settings
dictionary, the value passed as filename will be ignored,
replaced with the configure_zcml value.

settings, if used, should be a dictionary containing runtime
settings (e.g. the key/value pairs in an app section of a
PasteDeploy file), with each key representing the option and the
key’s value representing the specific option value,
e.g. {'reload_templates':True}. Note that the keyword
parameter options is a backwards compatibility alias for the
settings keyword parameter.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.scripting

	
get_root(app, request=None)

	Return a tuple composed of (root, closer) when provided a
router instance as the app argument. The root
returned is the application root object. The closer returned
is a callable (accepting no arguments) that should be called when
your scripting application is finished using the root. If
request is not None, it is used as the request passed to the
Pyramid application root factory. A request is
constructed and passed to the root factory if request is None.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.security

Authentication API Functions

	
authenticated_userid(request)

	Return the userid of the currently authenticated user or
None if there is no authentication policy in effect or
there is no currently authenticated user.

	
effective_principals(request)

	Return the list of ‘effective’ principal identifiers
for the request. This will include the userid of the
currently authenticated user if a user is currently
authenticated. If no authentication policy is in effect,
this will return an empty sequence.

	
forget(request)

	Return a sequence of header tuples (e.g. [('Set-Cookie',
'foo=abc')]) suitable for ‘forgetting’ the set of credentials
possessed by the currently authenticated user. A common usage
might look like so within the body of a view function
(response is assumed to be an WebOb -style
response object computed previously by the view code):

from pyramid.security import forget
headers = forget(request)
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence.

	
remember(request, principal, **kw)

	Return a sequence of header tuples (e.g. [('Set-Cookie',
'foo=abc')]) suitable for ‘remembering’ a set of credentials
implied by the data passed as principal and *kw using the
current authentication policy. Common usage might look
like so within the body of a view function (response is
assumed to be an WebOb -style response object
computed previously by the view code):

from pyramid.security import remember
headers = remember(request, 'chrism', password='123', max_age='86400')
response.headerlist.extend(headers)
return response

If no authentication policy is in use, this function will
always return an empty sequence. If used, the composition and
meaning of **kw must be agreed upon by the calling code and
the effective authentication policy.

Authorization API Functions

	
has_permission(permission, context, request)

	Provided a permission (a string or unicode object), a context
(a resource instance) and a request object, return an
instance of pyramid.security.Allowed if the permission
is granted in this context to the user implied by the
request. Return an instance of pyramid.security.Denied
if this permission is not granted in this context to this user.
This function delegates to the current authentication and
authorization policies. Return
pyramid.security.Allowed unconditionally if no
authentication policy has been configured in this application.

	
principals_allowed_by_permission(context, permission)

	Provided a context (a resource object), and a permission
(a string or unicode object), if a authorization policy is
in effect, return a sequence of principal ids that possess
the permission in the context. If no authorization policy is
in effect, this will return a sequence with the single value
pyramid.security.Everyone (the special principal
identifier representing all principals).

Note

even if an authorization policy is in effect,
some (exotic) authorization policies may not implement the
required machinery for this function; those will cause a
NotImplementedError exception to be raised when this
function is invoked.

	
view_execution_permitted(context, request, name='')

	If the view specified by context and name is protected
by a permission, check the permission associated with the
view using the effective authentication/authorization policies and
the request. Return a boolean result. If no
authorization policy is in effect, or if the view is not
protected by a permission, return True.

Constants

	
Everyone

	The special principal id named ‘Everyone’. This principal id is
granted to all requests. Its actual value is the string
‘system.Everyone’.

	
Authenticated

	The special principal id named ‘Authenticated’. This principal id
is granted to all requests which contain any other non-Everyone
principal id (according to the authentication policy).
Its actual value is the string ‘system.Authenticated’.

	
ALL_PERMISSIONS

	An object that can be used as the permission member of an ACE
which matches all permissions unconditionally. For example, an
ACE that uses ALL_PERMISSIONS might be composed like so:
('Deny', 'system.Everyone', ALL_PERMISSIONS).

	
DENY_ALL

	A convenience shorthand ACE that defines ('Deny',
'system.Everyone', ALL_PERMISSIONS). This is often used as the
last ACE in an ACL in systems that use an “inheriting” security
policy, representing the concept “don’t inherit any other ACEs”.

Return Values

	
Allow

	The ACE “action” (the first element in an ACE e.g. (Allow, Everyone,
'read') that means allow access. A sequence of ACEs makes up an
ACL. It is a string, and it’s actual value is “Allow”.

	
Deny

	The ACE “action” (the first element in an ACE e.g. (Deny,
'george', 'read') that means deny access. A sequence of ACEs
makes up an ACL. It is a string, and it’s actual value is “Deny”.

	
class ACLDenied

	An instance of ACLDenied represents that a security check
made explicitly against ACL was denied. It evaluates equal to all
boolean false types. It also has attributes which indicate which
acl, ace, permission, principals, and context were involved in the
request. Its __str__ method prints a summary of these attributes
for debugging purposes. The same summary is available as the
msg attribute.

	
class ACLAllowed

	An instance of ACLAllowed represents that a security check
made explicitly against ACL was allowed. It evaluates equal to
all boolean true types. It also has attributes which indicate
which acl, ace, permission, principals, and context were involved
in the request. Its __str__ method prints a summary of these
attributes for debugging purposes. The same summary is available
as the msg attribute.

	
class Denied

	An instance of Denied is returned when a security-related
API or other Pyramid code denies an action unrelated to
an ACL check. It evaluates equal to all boolean false types. It
has an attribute named msg describing the circumstances for
the deny.

	
class Allowed

	An instance of Allowed is returned when a security-related
API or other Pyramid code allows an action unrelated to
an ACL check. It evaluates equal to all boolean true types. It
has an attribute named msg describing the circumstances for
the allow.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.session

	
UnencryptedCookieSessionFactoryConfig(secret, timeout=1200, cookie_name='session', cookie_max_age=None, cookie_path='/', cookie_domain=None, cookie_secure=False, cookie_httponly=False, cookie_on_exception=False)

	Configure a session factory which will provide unencrypted
(but signed) cookie-based sessions. The return value of this
function is a session factory, which may be provided as
the session_factory argument of a
pyramid.config.Configurator constructor, or used
as the session_factory argument of the
pyramid.config.Configurator.set_session_factory()
method.

The session factory returned by this function will create sessions
which are limited to storing fewer than 4000 bytes of data (as the
payload must fit into a single cookie).

Parameters:

	secret

	A string which is used to sign the cookie.

	timeout

	A number of seconds of inactivity before a session times out.

	cookie_name

	The name of the cookie used for sessioning. Default: session.

	cookie_max_age

	The maximum age of the cookie used for sessioning (in seconds).
Default: None (browser scope).

	cookie_path

	The path used for the session cookie. Default: /.

	cookie_domain

	The domain used for the session cookie. Default: None (no domain).

	cookie_secure

	The ‘secure’ flag of the session cookie. Default: False.

	cookie_httponly

	The ‘httpOnly’ flag of the session cookie. Default: False.

	cookie_on_exception

	If True, set a session cookie even if an exception occurs
while rendering a view. Default: False.

	
signed_serialize(data, secret)

	Serialize any pickleable structure (data) and sign it
using the secret (must be a string). Return the
serialization, which includes the signature as its first 40 bytes.
The signed_deserialize method will deserialize such a value.

This function is useful for creating signed cookies. For example:

cookieval = signed_serialize({'a':1}, 'secret')
response.set_cookie('signed_cookie', cookieval)

	
signed_deserialize(serialized, secret, hmac=<module 'hmac' from '/home/chrism/opt/Python-2.6.5/lib/python2.6/hmac.pyc'>)

	Deserialize the value returned from signed_serialize. If
the value cannot be deserialized for any reason, a
ValueError exception will be raised.

This function is useful for deserializing a signed cookie value
created by signed_serialize. For example:

cookieval = request.cookies['signed_cookie']
data = signed_deserialize(cookieval, 'secret')

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.settings

	
get_settings()

	Return a ‘settings’ object for the current application. A
‘settings’ object is a dictionary-like object that contains
key/value pairs based on the dictionary passed as the settings
argument to the pyramid.config.Configurator
constructor or the pyramid.router.make_app() API.

Note

For backwards compatibility, dictionary keys can also be
looked up as attributes of the settings object.

Note

the
pyramid.config.Configurator.get_settings method
performs the same duty.

Warning

This method is deprecated as of Pyramid 1.0. Use
pyramid.threadlocals.get_current_registry().settings instead or use ‘
the settings attribute of the registry available from the request
(request.registry.settings).

	
asbool(s)

	Return the boolean value True if the case-lowered value of string
input s is any of t, true, y, on, or 1, otherwise
return the boolean value False. If s is the value None,
return False. If s is already one of the boolean values True
or False, return it.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.testing

	
registerDummySecurityPolicy(userid=None, groupids=(), permissive=True)

	Registers a pair of faux Pyramid security policies:
a authentication policy and a authorization
policy.

The behavior of the registered authorization policy
depends on the permissive argument. If permissive is
true, a permissive authorization policy is registered;
this policy allows all access. If permissive is false, a
nonpermissive authorization policy is registered; this
policy denies all access.

The behavior of the registered authentication policy
depends on the values provided for the userid and groupids
argument. The authentication policy will return the userid
identifier implied by the userid argument and the group ids
implied by the groupids argument when the
pyramid.security.authenticated_userid() or
pyramid.security.effective_principals() APIs are used.

This function is most useful when testing code that uses the APIs
named pyramid.security.has_permission(),
pyramid.security.authenticated_userid(),
pyramid.security.effective_principals(), and
pyramid.security.principals_allowed_by_permission().

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.testing_securitypolicy()
method in your unit and integration tests.

	
registerResources(resources)

	Registers a dictionary of resource objects that can be
resolved via the pyramid.traversal.find_resource() API.

The pyramid.traversal.find_resource() API is called with a
path as one of its arguments. If the dictionary you register when
calling this method contains that path as a string key
(e.g. /foo/bar or foo/bar), the corresponding value will
be returned to find_resource (and thus to your code) when
pyramid.traversal.find_resource() is called with an
equivalent path string or tuple.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.testing_resources()
method in your unit and integration tests.

Note

For ancient backward compatibility purposes, this API can also
be accessed as pyramid.testing.registerModels().

	
registerEventListener(event_iface=None)

	Registers an event listener (aka subscriber)
listening for events of the type event_iface. This method
returns a list object which is appended to by the subscriber
whenever an event is captured.

When an event is dispatched that matches event_iface, that
event will be appended to the list. You can then compare the
values in the list to expected event notifications. This method
is useful when testing code that wants to call
pyramid.registry.Registry.notify(),
zope.component.event.dispatch() or
zope.component.event.objectEventNotify().

The default value of event_iface (None) implies a
subscriber registered for any kind of event.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.testing_add_subscriber()
method in your unit and integration tests.

	
registerTemplateRenderer(path, renderer=None)

	Register a template renderer at path (usually a relative
filename ala templates/foo.pt) and return the renderer object.
If the renderer argument is None, a ‘dummy’ renderer will be
used. This function is useful when testing code that calls the
pyramid.renderers.render() function or
pyramid.renderers.render_to_response() function or any
other render_* or get_* API of the
pyramid.renderers module.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.testing_add_template()
method in your unit and integration tests.

	
registerView(name, result='', view=None, for_=(<InterfaceClass zope.interface.Interface>, <InterfaceClass zope.interface.Interface>), permission=None)

	Registers a Pyramid view callable under the
name implied by the name argument. The view will return a
WebOb Response object with the value implied by
the result argument as its body attribute. To gain more
control, if you pass in a non-None view argument, this
value will be used as a view callable instead of an automatically
generated view callable (and result is not used).

To protect the view using a permission, pass in a
non-None value as permission. This permission will be
checked by any active authorization policy when view
execution is attempted.

This function is useful when testing code which calls
pyramid.view.render_view_to_response().

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.add_view()
method in your unit and integration tests.

	
registerUtility(impl, iface=<InterfaceClass zope.interface.Interface>, name='')

	Register a ZCA utility component.

The impl argument specifies the implementation of the utility.
The iface argument specifies the interface which will
be later required to look up the utility
(zope.interface.Interface, by default). The name
argument implies the utility name; it is the empty string by
default.

See The ZCA book [http://www.muthukadan.net/docs/zca.html] for
more information about ZCA utilities.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the pyramid.Registry.registerUtility()
method. The registry attribute of a Configurator
in your unit and integration tests is an instance of the
pyramid.Registry class.

	
registerAdapter(impl, for_=<InterfaceClass zope.interface.Interface>, provides=<InterfaceClass zope.interface.Interface>, name='')

	Register a ZCA adapter component.

The impl argument specifies the implementation of the
component (often a class). The for_ argument implies the
for interface type used for this registration; it is
zope.interface.Interface by default. If for is not a
tuple or list, it will be converted to a one-tuple before being
passed to underlying pyramid.registry.registerAdapter()
API.

The provides argument specifies the ZCA ‘provides’ interface,
zope.interface.Interface by default.

The name argument is the empty string by default; it implies
the name under which the adapter is registered.

See The ZCA book [http://www.muthukadan.net/docs/zca.html] for
more information about ZCA adapters.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the pyramid.Registry.registerAdapter()
method. The registry attribute of a Configurator
in your unit and integration tests is an instance of the
pyramid.Registry class.

	
registerSubscriber(subscriber, iface=<InterfaceClass zope.interface.Interface>)

	Register a ZCA subscriber component.

The subscriber argument specifies the implementation of the
subscriber component (often a function).

The iface argument is the interface type for which the
subscriber will be registered (zope.interface.Interface
by default). If iface is not a tuple or list, it will be
converted to a one-tuple before being passed to the underlying ZCA
pyramid.registry.registerHandler() method.

See The ZCA book [http://www.muthukadan.net/docs/zca.html] for
more information about ZCA subscribers.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.add_subscriber()
method in your unit and integration tests.

	
registerRoute(pattern, name, factory=None)

	Register a new route using a pattern
(e.g. :pagename), a name (e.g. home), and an optional root
factory.

The pattern argument implies the route pattern. The name
argument implies the route name. The factory argument implies
a root factory associated with the route.

This API is useful for testing code that calls
e.g. pyramid.url.route_url().

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.add_route()
method in your unit and integration tests.

	
registerSettings(dictarg=None, **kw)

	Register one or more ‘setting’ key/value pairs. A setting is
a single key/value pair in the dictionary-ish object returned from
the API pyramid.registry.Registry.settings.

You may pass a dictionary:

registerSettings({'external_uri':'http://example.com'})

Or a set of key/value pairs:

registerSettings(external_uri='http://example.com')

Use of this function is required when you need to test code that calls
the pyramid.registry.Registry.settings API and which uses return
values from that API.

Warning

This API is deprecated as of Pyramid 1.0.
Instead use the
pyramid.config.Configurator.add_settings()
method in your unit and integration tests.

	
setUp(registry=None, request=None, hook_zca=True, autocommit=True)

	Set Pyramid registry and request thread locals for the
duration of a single unit test.

Use this function in the setUp method of a unittest test case
which directly or indirectly uses:

	any of the register* functions in pyramid.testing
(such as pyramid.testing.registerResources())

	any method of the pyramid.config.Configurator
object returned by this function.

	the pyramid.threadlocal.get_current_registry() or
pyramid.threadlocal.get_current_request() functions.

If you use the testing.register* APIs, or the
get_current_* functions (or call Pyramid code that
uses these functions) without calling setUp,
pyramid.threadlocal.get_current_registry() will return a
global application registry, which may cause unit tests
to not be isolated with respect to registrations they perform.

If the registry argument is None, a new empty
application registry will be created (an instance of the
pyramid.registry.Registry class). If the registry
argument is not None, the value passed in should be an
instance of the pyramid.registry.Registry class or a
suitable testing analogue.

After setUp is finished, the registry returned by the
pyramid.threadlocal.get_current_request() function will
be the passed (or constructed) registry until
pyramid.testing.tearDown() is called (or
pyramid.testing.setUp() is called again) .

If the hook_zca argument is True, setUp will attempt
to perform the operation zope.component.getSiteManager.sethook(
pyramid.threadlocal.get_current_registry), which will cause
the Zope Component Architecture global API
(e.g. zope.component.getSiteManager(),
zope.component.getAdapter(), and so on) to use the registry
constructed by setUp as the value it returns from
zope.component.getSiteManager(). If the
zope.component package cannot be imported, or if
hook_zca is False, the hook will not be set.

This function returns an instance of the
pyramid.config.Configurator class, which can be
used for further configuration to set up an environment suitable
for a unit or integration test. The registry attribute
attached to the Configurator instance represents the ‘current’
application registry; the same registry will be returned
by pyramid.threadlocal.get_current_registry() during the
execution of the test.

Warning

Although this method of setting up a test registry
will never disappear, after Pyramid 1.0,
using the begin and end methods of a
Configurator are preferred to using
pyramid.testing.setUp and
pyramid.testing.tearDown. See
Unit, Integration, and Functional Testing for more information.

	
tearDown(unhook_zca=True)

	Undo the effects pyramid.testing.setUp(). Use this
function in the tearDown method of a unit test that uses
pyramid.testing.setUp() in its setUp method.

If the unhook_zca argument is True (the default), call
zope.component.getSiteManager.reset(). This undoes the
action of pyramid.testing.setUp() called with the
argument hook_zca=True. If zope.component cannot be
imported, ignore the argument.

Warning

Although this method of tearing a test setup down
will never disappear, after Pyramid 1.0,
using the begin and end methods of a
Configurator are preferred to using
pyramid.testing.setUp and
pyramid.testing.tearDown. See
Unit, Integration, and Functional Testing for more information.

	
cleanUp(*arg, **kw)

	pyramid.testing.cleanUp() is an alias for
pyramid.testing.setUp(). Although this function is
effectively deprecated as of Pyramid 1.0, due to its
extensive production usage, it will never be removed.

	
class DummyResource(__name__=None, __parent__=None, __provides__=None, **kw)

	A dummy Pyramid resource object.

	
clone(__name__=<object object at 0x5566cc0>, __parent__=<object object at 0x5566cc0>, **kw)

	Create a clone of the resource object. If __name__ or
__parent__ arguments are passed, use these values to
override the existing __name__ or __parent__ of the
resource. If any extra keyword args are passed in via the kw
argument, use these keywords to add to or override existing
resource keywords (attributes).

	
items()

	Return the items set by __setitem__

	
keys()

	Return the keys set by __setitem__

	
values()

	Return the values set by __setitem__

	
class DummyRequest(params=None, environ=None, headers=None, path='/', cookies=None, post=None, **kw)

	A dummy request object (imitates a request object).

The params, environ, headers, path, and
cookies arguments correspond to their :term`WebOb`
equivalents.

The post argument, if passed, populates the request’s
POST attribute, but not params, in order to allow testing
that the app accepts data for a given view only from POST requests.
This argument also sets self.method to “POST”.

Extra keyword arguments are assigned as attributes of the request
itself.

Note

For backwards compatibility purposes, this class can also be
imported as pyramid.testing.DummyModel.

	
class DummyTemplateRenderer(string_response='')

	An instance of this class is returned from
pyramid.testing.registerTemplateRenderer(). It has a
helper function (assert_) that makes it possible to make an
assertion which compares data passed to the renderer by the view
function against expected key/value pairs.

	
assert_(**kw)

	Accept an arbitrary set of assertion key/value pairs. For
each assertion key/value pair assert that the renderer
(eg. pyramid.renderer.render_to_response())
received the key with a value that equals the asserted
value. If the renderer did not receive the key at all, or the
value received by the renderer doesn’t match the assertion
value, raise an AssertionError.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.threadlocal

	
get_current_request()

	Return the currently active request or None if no request
is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. it’s almost always usually a mistake to use
get_current_request outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

	
get_current_registry()

	Return the currently active application registry or the
global application registry if no request is currently active.

This function should be used extremely sparingly, usually only
in unit testing code. it’s almost always usually a mistake to use
get_current_registry outside a testing context because its
usage makes it possible to write code that can be neither easily
tested nor scripted.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.traversal

	
find_interface(resource, class_or_interface)

	Return the first object found in the parent chain of resource
which, a) if class_or_interface is a Python class object, is
an instance of the class or any subclass of that class or b) if
class_or_interface is a interface, provides the
specified interface. Return None if no object providing
interface_or_class can be found in the parent chain. The
resource passed in must be location-aware.

	
find_resource(resource, path)

	Given a resource object and a string or tuple representing a path
(such as the return value of
pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple()), return a context
in this application’s resource tree at the specified path. The
resource passed in must be location-aware. If the path
cannot be resolved (if the respective node in the graph does not
exist), a KeyError will be raised.

This function is the logical inverse of
pyramid.traversal.resource_path() and
pyramid.traversal.resource_path_tuple(); it can resolve any
path string or tuple generated by either of those functions.

Rules for passing a string as the path argument: if the
first character in the path string is the with the /
character, the path will considered absolute and the graph
traversal will start at the root object. If the first character
of the path string is not the / character, the path is
considered relative and graph traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and as
each path segment must escaped via Python’s urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the graph
traversal will start at the graph root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and graph
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name). Resource path tuples generated by
pyramid.traversal.resource_path_tuple() can always be
resolved by find_resource.

Note

For backwards compatibility purposes, this function can also
be imported as pyramid.traversal.find_model().

	
find_root(resource)

	Find the root node in the graph to which resource
belongs. Note that resource should be location-aware.
Note that the root resource is available in the request object by
accessing the request.root attribute.

	
resource_path(resource, *elements)

	Return a string object representing the absolute physical path of the
resource object based on its position in the resource tree, e.g
/foo/bar. Any positional arguments passed in as elements will be
appended as path segments to the end of the resource path. For instance,
if the resource’s path is /foo/bar and elements equals ('a',
'b'), the returned string will be /foo/bar/a/b. The first
character in the string will always be the / character (a leading
/ character in a path string represents that the path is absolute).

Resource path strings returned will be escaped in the following
manner: each unicode path segment will be encoded as UTF-8 and
each path segment will be escaped via Python’s urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a.

This function is a logical inverse of
pyramid.traversal.find_resource: it can be used to generate
path references that can later be resolved via that function.

The resource passed in must be location-aware.

Note

Each segment in the path string returned will use the
__name__ attribute of the resource it represents within
the graph. Each of these segments should be a unicode
or string object (as per the contract of
location-awareness). However, no conversion or
safety checking of resource names is performed. For
instance, if one of the resources in your tree has a
__name__ which (by error) is a dictionary, the
pyramid.traversal.resource_path() function will
attempt to append it to a string and it will cause a
pyramid.exceptions.URLDecodeError.

Note

The root resource must have a __name__
attribute with a value of either None or the empty
string for paths to be generated properly. If the root
resource has a non-null __name__ attribute, its name
will be prepended to the generated path rather than a
single leading ‘/’ character.

Note

For backwards compatibility purposes, this function can also
be imported as model_path.

	
resource_path_tuple(resource, *elements)

	Return a tuple representing the absolute physical path of the
resource object based on its position in an object graph, e.g
('', 'foo', 'bar'). Any positional arguments passed in as
elements will be appended as elements in the tuple
representing the resource path. For instance, if the resource’s
path is ('', 'foo', 'bar') and elements equals ('a', 'b'),
the returned tuple will be ('', 'foo', 'bar', 'a', b'). The
first element of this tuple will always be the empty string (a
leading empty string element in a path tuple represents that the
path is absolute).

This function is a logical inverse of
pyramid.traversal.find_resource(): it can be used to
generate path references that can later be resolved that function.

The resource passed in must be location-aware.

Note

Each segment in the path tuple returned will equal the
__name__ attribute of the resource it represents within
the graph. Each of these segments should be a unicode
or string object (as per the contract of
location-awareness). However, no conversion or
safety checking of resource names is performed. For
instance, if one of the resources in your tree has a
__name__ which (by error) is a dictionary, that
dictionary will be placed in the path tuple; no warning
or error will be given.

Note

The root resource must have a __name__
attribute with a value of either None or the empty
string for path tuples to be generated properly. If
the root resource has a non-null __name__ attribute,
its name will be the first element in the generated
path tuple rather than the empty string.

Note

For backwards compatibility purposes, this function can also
be imported as model_path_tuple.

	
quote_path_segment(segment)

	Return a quoted representation of a ‘path segment’ (such as
the string __name__ attribute of a resource) as a string. If the
segment passed in is a unicode object, it is converted to a
UTF-8 string, then it is URL-quoted using Python’s
urllib.quote. If the segment passed in is a string, it is
URL-quoted using Python’s urllib.quote. If the segment
passed in is not a string or unicode object, an error will be
raised. The return value of quote_path_segment is always a
string, never Unicode.

Note

The return value for each segment passed to this
function is cached in a module-scope dictionary for
speed: the cached version is returned when possible
rather than recomputing the quoted version. No cache
emptying is ever done for the lifetime of an
application, however. If you pass arbitrary
user-supplied strings to this function (as opposed to
some bounded set of values from a ‘working set’ known to
your application), it may become a memory leak.

	
virtual_root(resource, request)

	Provided any resource and a request object, return
the resource object representing the virtual root of the
current request. Using a virtual root in a
traversal -based Pyramid application permits
rooting, for example, the object at the traversal path /cms at
http://example.com/ instead of rooting it at
http://example.com/cms/.

If the resource passed in is a context obtained via
traversal, and if the HTTP_X_VHM_ROOT key is in the
WSGI environment, the value of this key will be treated as a
‘virtual root path’: the pyramid.traversal.find_resource()
API will be used to find the virtual root object using this path;
if the object is found, it will be returned. If the
HTTP_X_VHM_ROOT key is is not present in the WSGI environment,
the physical root of the graph will be returned instead.

Virtual roots are not useful at all in applications that use
URL dispatch. Contexts obtained via URL dispatch don’t
really support being virtually rooted (each URL dispatch context
is both its own physical and virtual root). However if this API
is called with a resource argument which is a context obtained
via URL dispatch, the resource passed in will be returned
unconditionally.

	
traverse(resource, path)

	Given a resource object as resource and a string or tuple
representing a path as path (such as the return value of
pyramid.traversal.resource_path() or
pyramid.traversal.resource_path_tuple() or the value of
request.environ['PATH_INFO']), return a dictionary with the
keys context, root, view_name, subpath,
traversed, virtual_root, and virtual_root_path.

A definition of each value in the returned dictionary:

	context: The context (a resource object) found
via traversal or url dispatch. If the path passed in is the
empty string, the value of the resource argument passed to this
function is returned.

	root: The resource object at which traversal begins.
If the resource passed in was found via url dispatch or if the
path passed in was relative (non-absolute), the value of the
resource argument passed to this function is returned.

	view_name: The view name found during
traversal or url dispatch; if the resource was
found via traversal, this is usually a representation of the
path segment which directly follows the path to the context
in the path. The view_name will be a Unicode object or
the empty string. The view_name will be the empty string if
there is no element which follows the context path. An
example: if the path passed is /foo/bar, and a context
object is found at /foo (but not at /foo/bar), the ‘view
name’ will be u'bar'. If the resource was found via
urldispatch, the view_name will be the name the route found was
registered with.

	subpath: For a resource found via traversal, this
is a sequence of path segments found in the path that follow
the view_name (if any). Each of these items is a Unicode
object. If no path segments follow the view_name, the
subpath will be the empty sequence. An example: if the path
passed is /foo/bar/baz/buz, and a context object is found at
/foo (but not /foo/bar), the ‘view name’ will be
u'bar' and the subpath will be [u'baz', u'buz'].
For a resource found via url dispatch, the subpath will be a
sequence of values discerned from *subpath in the route
pattern matched or the empty sequence.

	traversed: The sequence of path elements traversed from the
root to find the context object during traversal.
Each of these items is a Unicode object. If no path segments
were traversed to find the context object (e.g. if the
path provided is the empty string), the traversed value
will be the empty sequence. If the resource is a resource found
via url dispatch, traversed will be None.

	virtual_root: A resource object representing the ‘virtual’ root
of the object graph being traversed during traversal.
See Virtual Hosting for a definition of the virtual root
object. If no virtual hosting is in effect, and the path
passed in was absolute, the virtual_root will be the
physical root object (the object at which traversal
begins). If the resource passed in was found via URL
dispatch or if the path passed in was relative, the
virtual_root will always equal the root object (the
resource passed in).

	virtual_root_path – If traversal was used to find
the resource, this will be the sequence of path elements
traversed to find the virtual_root object. Each of these
items is a Unicode object. If no path segments were traversed
to find the virtual_root object (e.g. if virtual hosting is
not in effect), the traversed value will be the empty list.
If url dispatch was used to find the resource, this will be
None.

If the path cannot be resolved, a KeyError will be raised.

Rules for passing a string as the path argument: if the
first character in the path string is the with the /
character, the path will considered absolute and the graph
traversal will start at the root object. If the first character
of the path string is not the / character, the path is
considered relative and graph traversal will begin at the resource
object supplied to the function as the resource argument. If an
empty string is passed as path, the resource passed in will
be returned. Resource path strings must be escaped in the following
manner: each Unicode path segment must be encoded as UTF-8 and
each path segment must escaped via Python’s urllib.quote.
For example, /path/to%20the/La%20Pe%C3%B1a (absolute) or
to%20the/La%20Pe%C3%B1a (relative). The
pyramid.traversal.resource_path() function generates strings
which follow these rules (albeit only absolute ones).

Rules for passing a tuple as the path argument: if the first
element in the path tuple is the empty string (for example ('',
'a', 'b', 'c'), the path is considered absolute and the graph
traversal will start at the graph root object. If the first
element in the path tuple is not the empty string (for example
('a', 'b', 'c')), the path is considered relative and graph
traversal will begin at the resource object supplied to the function
as the resource argument. If an empty sequence is passed as
path, the resource passed in itself will be returned. No
URL-quoting or UTF-8-encoding of individual path segments within
the tuple is required (each segment may be any string or unicode
object representing a resource name).

Explanation of the conversion of path segment values to
Unicode during traversal: Each segment is URL-unquoted, and
decoded into Unicode. Each segment is assumed to be encoded using
the UTF-8 encoding (or a subset, such as ASCII); a
pyramid.exceptions.URLDecodeError is raised if a segment
cannot be decoded. If a segment name is empty or if it is .,
it is ignored. If a segment name is .., the previous segment
is deleted, and the .. is ignored. As a result of this
process, the return values view_name, each element in the
subpath, each element in traversed, and each element in
the virtual_root_path will be Unicode as opposed to a string,
and will be URL-decoded.

	
traversal_path(path)

	Given a PATH_INFO string (slash-separated path segments),
return a tuple representing that path which can be used to
traverse a graph.

The PATH_INFO is split on slashes, creating a list of
segments. Each segment is URL-unquoted, and subsequently decoded
into Unicode. Each segment is assumed to be encoded using the
UTF-8 encoding (or a subset, such as ASCII); a
pyramid.exceptions.URLDecodeError is raised if a segment
cannot be decoded. If a segment name is empty or if it is .,
it is ignored. If a segment name is .., the previous segment
is deleted, and the .. is ignored.

If this function is passed a Unicode object instead of a string,
that Unicode object must directly encodeable to ASCII. For
example, u’/foo’ will work but u’/<unprintable unicode>’ (a
Unicode object with characters that cannot be encoded to ascii)
will not.

Examples:

/

()

/foo/bar/baz

(u’foo’, u’bar’, u’baz’)

foo/bar/baz

(u’foo’, u’bar’, u’baz’)

/foo/bar/baz/

(u’foo’, u’bar’, u’baz’)

/foo//bar//baz/

(u’foo’, u’bar’, u’baz’)

/foo/bar/baz/..

(u’foo’, u’bar’)

/my%20archives/hello

(u’my archives’, u’hello’)

/archives/La%20Pe%C3%B1a

(u’archives’, u’<unprintable unicode>’)

Note

This function does not generate the same type of tuples
that pyramid.traversal.resource_path_tuple() does.
In particular, the leading empty string is not present
in the tuple it returns, unlike tuples returned by
pyramid.traversal.resource_path_tuple(). As a
result, tuples generated by traversal_path are not
resolveable by the
pyramid.traversal.find_resource() API.
traversal_path is a function mostly used by the
internals of Pyramid and by people writing
their own traversal machinery, as opposed to users
writing applications in Pyramid.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.url

Utility functions for dealing with URLs in pyramid

	
resource_url(context, request, *elements, query=None, anchor=None)

	Generate a string representing the absolute URL of the resource
object based on the wsgi.url_scheme, HTTP_HOST or
SERVER_NAME in the request, plus any SCRIPT_NAME. The
overall result of this function is always a UTF-8 encoded string
(never Unicode).

Note

Calling pyramid.Request.resource_url() can be used to
achieve the same result as pyramid.url.resource_url().

Examples:

resource_url(context, request) =>

 http://example.com/

resource_url(context, request, 'a.html') =>

 http://example.com/a.html

resource_url(context, request, 'a.html', query={'q':'1'}) =>

 http://example.com/a.html?q=1

resource_url(context, request, 'a.html', anchor='abc') =>

 http://example.com/a.html#abc

Any positional arguments passed in as elements must be strings
or Unicode objects. These will be joined by slashes and appended
to the generated resource URL. Each of the elements passed in is
URL-quoted before being appended; if any element is Unicode, it
will converted to a UTF-8 bytestring before being URL-quoted.

Warning

if no elements arguments are specified, the resource
URL will end with a trailing slash. If any
elements are used, the generated URL will not
end in trailing a slash.

If a keyword argument query is present, it will used to
compose a query string that will be tacked on to the end of the
URL. The value of query must be a sequence of two-tuples or
a data structure with an .items() method that returns a
sequence of two-tuples (presumably a dictionary). This data
structure will be turned into a query string per the documentation
of repoze.url.urlencode function. After the query data is
turned into a query string, a leading ? is prepended, and the
resulting string is appended to the generated URL.

Note

Python data structures that are passed as query
which are sequences or dictionaries are turned into a
string under the same rules as when run through
urllib.urlencode() with the doseq argument
equal to True. This means that sequences can be
passed as values, and a k=v pair will be placed into the
query string for each value.

If a keyword argument anchor is present, its string
representation will be used as a named anchor in the generated URL
(e.g. if anchor is passed as foo and the resource URL is
http://example.com/resource/url, the resulting generated URL will
be http://example.com/resource/url#foo).

Note

If anchor is passed as a string, it should be UTF-8
encoded. If anchor is passed as a Unicode object, it
will be converted to UTF-8 before being appended to the
URL. The anchor value is not quoted in any way before
being appended to the generated URL.

If both anchor and query are specified, the anchor element
will always follow the query element,
e.g. http://example.com?foo=1#bar.

Note

If the resource used is the result of a
traversal, it must be location-aware.
The resource can also be the context of a URL
dispatch; contexts found this way do not need to be
location-aware.

Note

If a ‘virtual root path’ is present in the request
environment (the value of the WSGI environ key
HTTP_X_VHM_ROOT), and the resource was obtained via
traversal, the URL path will not include the
virtual root prefix (it will be stripped off the
left hand side of the generated URL).

Note

For backwards compatibility purposes, this function can also
be imported as model_url.

	
route_url(route_name, request, *elements, **kw)

	Generates a fully qualified URL for a named Pyramid
route configuration.

Note

Calling pyramid.Request.route_url() can be used to
achieve the same result as pyramid.url.route_url().

Use the route’s name as the first positional argument. Use a
request object as the second positional argument. Additional
positional arguments are appended to the URL as path segments
after it is generated.

Use keyword arguments to supply values which match any dynamic
path elements in the route definition. Raises a KeyError
exception if the URL cannot be generated for any reason (not
enough arguments, for example).

For example, if you’ve defined a route named “foobar” with the path
:foo/{bar}/*traverse:

route_url('foobar', request, foo='1') => <KeyError exception>
route_url('foobar', request, foo='1', bar='2') => <KeyError exception>
route_url('foobar', request, foo='1', bar='2',
 traverse=('a','b')) => http://e.com/1/2/a/b
route_url('foobar', request, foo='1', bar='2',
 traverse='/a/b') => http://e.com/1/2/a/b

Values replacing :segment arguments can be passed as strings
or Unicode objects. They will be encoded to UTF-8 and URL-quoted
before being placed into the generated URL.

Values replacing *remainder arguments can be passed as strings
or tuples of Unicode/string values. If a tuple is passed as a
*remainder replacement value, its values are URL-quoted and
encoded to UTF-8. The resulting strings are joined with slashes
and rendered into the URL. If a string is passed as a
*remainder replacement value, it is tacked on to the URL
untouched.

If a keyword argument _query is present, it will used to
compose a query string that will be tacked on to the end of the
URL. The value of _query must be a sequence of two-tuples
or a data structure with an .items() method that returns a
sequence of two-tuples (presumably a dictionary). This data
structure will be turned into a query string per the documentation
of pyramid.encode.urlencode() function. After the query
data is turned into a query string, a leading ? is prepended,
and the resulting string is appended to the generated URL.

Note

Python data structures that are passed as _query
which are sequences or dictionaries are turned into a
string under the same rules as when run through
urllib.urlencode() with the doseq argument
equal to True. This means that sequences can be
passed as values, and a k=v pair will be placed into the
query string for each value.

If a keyword argument _anchor is present, its string
representation will be used as a named anchor in the generated URL
(e.g. if _anchor is passed as foo and the route URL is
http://example.com/route/url, the resulting generated URL will
be http://example.com/route/url#foo).

Note

If _anchor is passed as a string, it should be UTF-8
encoded. If _anchor is passed as a Unicode object, it
will be converted to UTF-8 before being appended to the
URL. The anchor value is not quoted in any way before
being appended to the generated URL.

If both _anchor and _query are specified, the anchor
element will always follow the query element,
e.g. http://example.com?foo=1#bar.

If a keyword _app_url is present, it will be used as the
protocol/hostname/port/leading path prefix of the generated URL.
For example, using an _app_url of
http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from
this function if the expansion of the route pattern associated
with the route_name expanded to /fleeb/flub. If
_app_url is not specified, the result of
request.application_url will be used as the prefix (the
default).

This function raises a KeyError if the URL cannot be
generated due to missing replacement names. Extra replacement
names are ignored.

If the route object which matches the route_name argument has
a pregenerator, the *elements and **kw arguments
arguments passed to this function might be augmented or changed.

	
route_path(route_name, request, *elements, **kw)

	Generates a path (aka a ‘relative URL’, a URL minus the host, scheme,
and port) for a named Pyramid route configuration.

Note

Calling pyramid.Request.route_path() can be used to
achieve the same result as pyramid.url.route_path().

This function accepts the same argument as pyramid.url.route_url()
and performs the same duty. It just omits the host, port, and scheme
information in the return value; only the path, query parameters,
and anchor data are present in the returned string.

For example, if you’ve defined a route named ‘foobar’ with the path
/{foo}/{bar}, this call to route_path:

route_path('foobar', request, foo='1', bar='2')

Will return the string /1/2.

Note

Calling route_path('route', request) is the same as calling
route_url('route', request, _app_url=''). route_path is, in
fact, implemented in terms of route_url in just this way. As a
result, any _app_url pass within the **kw values to
route_path will be ignored.

	
static_url(path, request, **kw)

	Generates a fully qualified URL for a static asset.
The asset must live within a location defined via the
pyramid.config.Configurator.add_static_view()
configuration declaration or the <static> ZCML
directive (see Serving Static Assets).

Note

Calling pyramid.Request.static_url() can be used to
achieve the same result as pyramid.url.static_url().

Example:

static_url('mypackage:static/foo.css', request) =>

 http://example.com/static/foo.css

The path argument points at a file or directory on disk which
a URL should be generated for. The path may be either a
relative path (e.g. static/foo.css) or a asset
specification (e.g. mypackage:static/foo.css). A path
may not be an absolute filesystem path (a ValueError will
be raised if this function is supplied with an absolute path).

The request argument should be a request object.

The purpose of the **kw argument is the same as the purpose of
the pyramid.url.route_url() **kw argument. See the
documentation for that function to understand the arguments which
you can provide to it. However, typically, you don’t need to pass
anything as *kw when generating a static asset URL.

This function raises a ValueError if a static view
definition cannot be found which matches the path specification.

	
urlencode(query, doseq=True)

	An alternate implementation of Python’s stdlib urllib.urlencode
function [http://docs.python.org/library/urllib.html] which
accepts unicode keys and values within the query
dict/sequence; all Unicode keys and values are first converted to
UTF-8 before being used to compose the query string.

The value of query must be a sequence of two-tuples
representing key/value pairs or an object (often a dictionary)
with an .items() method that returns a sequence of two-tuples
representing key/value pairs.

For minimal calling convention backwards compatibility, this
version of urlencode accepts but ignores a second argument
conventionally named doseq. The Python stdlib version behaves
differently when doseq is False and when a sequence is
presented as one of the values. This version always behaves in
the doseq=True mode, no matter what the value of the second
argument.

See the Python stdlib documentation for urllib.urlencode for
more information.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.view

	
render_view_to_response(context, request, name='', secure=True)

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return a response object. This function will return
None if a corresponding view callable cannot be found
(when no view configuration matches the combination of
name / context / and request).

If secure` is True, and the view callable found is
protected by a permission, the permission will be checked before
calling the view function. If the permission check disallows view
execution (based on the current authorization policy), a
pyramid.exceptions.Forbidden exception will be raised.
The exception’s args attribute explains why the view access
was disallowed.

If secure is False, no permission checking is done.

	
render_view_to_iterable(context, request, name='', secure=True)

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request and
return an iterable object which represents the body of a response.
This function will return None if a corresponding view
callable cannot be found (when no view configuration
matches the combination of name / context / and
request). Additionally, this function will raise a
ValueError if a view function is found and called but the
view function’s result does not have an app_iter attribute.

You can usually get the string representation of the return value
of this function by calling ''.join(iterable), or just use
pyramid.view.render_view() instead.

If secure is True, and the view is protected by a
permission, the permission will be checked before the view
function is invoked. If the permission check disallows view
execution (based on the current authentication policy), a
pyramid.exceptions.Forbidden exception will be raised;
its args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is
done.

	
render_view(context, request, name='', secure=True)

	Call the view callable configured with a view
configuration that matches the view name name
registered against the specified context and request
and unwind the view response’s app_iter (see
View Callable Responses) into a single string. This function will
return None if a corresponding view callable cannot be
found (when no view configuration matches the combination
of name / context / and request). Additionally, this
function will raise a ValueError if a view function is
found and called but the view function’s result does not have an
app_iter attribute. This function will return None if a
corresponding view cannot be found.

If secure is True, and the view is protected by a
permission, the permission will be checked before the view is
invoked. If the permission check disallows view execution (based
on the current authorization policy), a
pyramid.exceptions.Forbidden exception will be raised;
its args attribute explains why the view access was
disallowed.

If secure is False, no permission checking is done.

	
is_response(ob)

	Return True if ob implements the interface implied by
View Callable Responses. False if not.

Note

this isn’t a true interface check (in Zope terms), it’s a
duck-typing check, as response objects are not obligated to
actually implement a Zope interface.

	
class view_config(name='', request_type=None, for_=None, permission=None, route_name=None, request_method=None, request_param=None, containment=None, attr=None, renderer=None, wrapper=None, xhr=False, accept=None, header=None, path_info=None, custom_predicates=(), context=None)

	A function, class or method decorator which allows a
developer to create view registrations nearer to a view
callable definition than use of ZCML or imperative
configuration to do the same.

For example, this code in a module views.py:

from resources import MyResource

@view_config(name='my_view', context=MyResource, permission='read',
 route_name='site1')
def my_view(context, request):
 return 'OK'

Might replace the following call to the
pyramid.config.Configurator.add_view() method:

import views
from resources import MyResource
config.add_view(views.my_view, context=MyResource, name='my_view',
 permission='read', 'route_name='site1')

Or might replace the following ZCML view declaration:

<view
 for='.resources.MyResource'
 view='.views.my_view'
 name='my_view'
 permission='read'
 route_name='site1'
 />

The following arguments are supported as arguments to
pyramid.view.view_config: context, permission,
name, request_type, route_name, request_method,
request_param, containment, xhr, accept,
header and path_info.

context should be a Python object or dotted Python
name representing the context type that must be found for this
view to be called. If context is not supplied, the interface
zope.interface.Interface (matching any context) is used. An
alias for context is for_.

If permission is not supplied, no permission is registered for
this view (it’s accessible by any caller).

If name is not supplied, the empty string is used (implying
the default view name).

If attr is not supplied, None is used (implying the
function itself if the view is a function, or the __call__
callable attribute if the view is a class).

If renderer is not supplied, None is used (meaning that no
renderer is associated with this view).

If wrapper is not supplied, None is used (meaning that no
view wrapper is associated with this view).

If request_type is not supplied, the interface
pyramid.interfaces.IRequest is used, implying the
standard request interface type.

If route_name is not supplied, the view configuration is
considered to be made against a URL that doesn’t match any defined
route. The use of a route_name is an advanced
feature, useful only if you’re also using url dispatch.

If request_method is not supplied, this view will match a
request with any HTTP REQUEST_METHOD
(GET/POST/PUT/HEAD/DELETE). If this parameter is supplied, it
must be a string naming an HTTP REQUEST_METHOD, indicating
that this view will only match when the current request has a
REQUEST_METHOD that matches this value.

If request_param is not supplied, this view will be called
when a request with any (or no) request GET or POST parameters is
encountered. If the value is present, it must be a string. If
the value supplied to the parameter has no = sign in it, it
implies that the key must exist in the request.params
dictionary for this view to ‘match’ the current request. If the value
supplied to the parameter has a = sign in it, e.g.
request_params="foo=123", then the key (foo) must both exist
in the request.params dictionary, and the value must match the
right hand side of the expression (123) for the view to “match” the
current request.

containment should be a Python object or dotted Python
name representing a class or interface type which must be found
as one of the context’s location parents for this view to be
called. If containment is not supplied, this view will be
called when the context of the request has any (or no)
lineage. If containment is supplied, it must be a
class or interface, denoting that the view’matches’ the
current request only if any graph lineage node possesses
this class or interface.

If xhr is specified, it must be a boolean value. If the value
is True, the view will only be invoked if the request’s
X-Requested-With header has the value XMLHttpRequest.

If accept is specified, it must be a mimetype value. If
accept is specified, the view will only be invoked if the
Accept HTTP header matches the value requested. See the
description of accept in view for information
about the allowable composition and matching behavior of this
value.

If header is specified, it must be a header name or a
headername:headervalue pair. If header is specified, and
possesses a value the view will only be invoked if an HTTP header
matches the value requested. If header is specified without a
value (a bare header name only), the view will only be invoked if
the HTTP header exists with any value in the request. See the
description of header in view for information
about the allowable composition and matching behavior of this
value.

If path_info is specified, it must be a regular
expression. The view will only be invoked if the PATH_INFO
WSGI environment variable matches the expression.

If custom_predicates is specified, it must be a sequence of
predicate callables (a predicate callable accepts two
arguments: context and request and returns True or
False). The view will only be invoked if all custom
predicates return True.

Any individual or all parameters can be omitted. The simplest
pyramid.view.view_config declaration is:

@view_config()
def my_view(...):
 ...

Such a registration implies that the view name will be
my_view, registered for any context object, using no
permission, registered against all non-URL-dispatch-based
requests, with any REQUEST_METHOD, any set of request.params
values, without respect to any object in the lineage.

The view_config decorator can also be used as a class decorator
in Python 2.6 and better (Python 2.5 and below do not support
class decorators):

from pyramid.response import Response
from pyramid.view import view_config

@view_config()
class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request
 def __call__(self):
 return Response('hello from %s!' % self.context)

In Python 2.5 and below, the view_config decorator can still be
used against a class, although not in decorator form:

from pyramid.response import Response
from pyramid.view import view_config

class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request
 def __call__(self):
 return Response('hello from %s!' % self.context)

MyView = view_config()(MyView)

Note

When a view is a class, the calling semantics are
different than when it is a function or another
non-class callable. See Defining a View Callable as a Class for more
information.

Warning

Using a class as a view is a new feature in 0.8.1+.

The view_config decorator can also be used against a class
method:

from pyramid.response import Response
from pyramid.view import view_config

class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 @view_config(name='hello')
 def amethod(self):
 return Response('hello from %s!' % self.context)

When the view_config decorator is used against a class method,
a view is registered for the class (as described above), so the
class constructor must accept either request or context,
request. The method which is decorated must return a response
(or rely on a renderer to generate one). Using the
decorator against a particular method of a class is equivalent to
using the attr parameter in a decorator attached to the class
itself. For example, the above registration implied by the
decorator being used against the amethod method could be
spelled equivalently as:

from pyramid.response import Response
from pyramid.view import view_config

@view_config(attr='amethod', name='hello')
class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 def amethod(self):
 return Response('hello from %s!' % self.context)

To make use of any view_config declaration, you must perform a
scan. To do so, either insert the following boilerplate
into your application registry’s ZCML:

<scan package="."/>

See scan for more information about the ZCML
scan directive.

Or, if you don’t use ZCML, use the
pyramid.config.Configurator.scan() method:

config.scan()

	
static

	alias of static_view

	
append_slash_notfound_view(context, request)

	For behavior like Django’s APPEND_SLASH=True, use this view as the
Not Found view in your application.

When this view is the Not Found view (indicating that no view was
found), and any routes have been defined in the configuration of your
application, if the value of the PATH_INFO WSGI environment
variable does not already end in a slash, and if the value of
PATH_INFO plus a slash matches any route’s path, do an HTTP
redirect to the slash-appended PATH_INFO. Note that this will lose
POST data information (turning it into a GET), so you shouldn’t
rely on this to redirect POST requests.

If you use ZCML, add the following to your application’s
configure.zcml to use this view as the Not Found view:

<view
 context="pyramid.exceptions.NotFound"
 view="pyramid.view.append_slash_notfound_view"/>

Or use the
pyramid.config.Configurator.add_view()
method if you don’t use ZCML:

from pyramid.exceptions import NotFound
from pyramid.view import append_slash_notfound_view
config.add_view(append_slash_notfound_view, context=NotFound)

See also Changing the Not Found View.

	
class AppendSlashNotFoundViewFactory(notfound_view=None)

	There can only be one Not Found view in any
Pyramid application. Even if you use
pyramid.view.append_slash_notfound_view() as the Not
Found view, Pyramid still must generate a 404 Not
Found response when it cannot redirect to a slash-appended URL;
this not found response will be visible to site users.

If you don’t care what this 404 response looks like, and you only
need redirections to slash-appended route URLs, you may use the
pyramid.view.append_slash_notfound_view() object as the
Not Found view. However, if you wish to use a custom notfound
view callable when a URL cannot be redirected to a slash-appended
URL, you may wish to use an instance of this class as the Not
Found view, supplying a view callable to be used as the
custom notfound view as the first argument to its constructor.
For instance:

from pyramid.exceptions import NotFound
from pyramid.view import AppendSlashNotFoundViewFactory

def notfound_view(context, request):
 return HTTPNotFound('It aint there, stop trying!')

custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
config.add_view(custom_append_slash, context=NotFound)

The notfound_view supplied must adhere to the two-argument
view callable calling convention of (context, request)
(context will be the exception object).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	API Documentation

pyramid.wsgi

	
wsgiapp(wrapped)

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp2() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment are
not performed before the application is invoked.

E.g., the following in a views.py module:

@wsgiapp
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following ZCML view declaration to be made:

<view
 view=".views.hello_world"
 name="hello_world.txt"
 />

Or the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp decorator will convert the result of the WSGI
application to a Response and return it to
Pyramid as if the WSGI app were a pyramid
view.

	
wsgiapp2(wrapped)

	Decorator to turn a WSGI application into a Pyramid
view callable. This decorator differs from the
pyramid.wsgi.wsgiapp() decorator inasmuch as fixups of
PATH_INFO and SCRIPT_NAME within the WSGI environment
are performed before the application is invoked.

E.g. the following in a views.py module:

@wsgiapp2
def hello_world(environ, start_response):
 body = 'Hello world'
 start_response('200 OK', [('Content-Type', 'text/plain'),
 ('Content-Length', len(body))])
 return [body]

Allows the following ZCML view declaration to be made:

<view
 view=".views.hello_world"
 name="hello_world.txt"
 />

Or the following call to
pyramid.config.Configurator.add_view():

from views import hello_world
config.add_view(hello_world, name='hello_world.txt')

The wsgiapp2 decorator will convert the result of the WSGI
application to a Response and return it to Pyramid as if
the WSGI app were a Pyramid view. The SCRIPT_NAME
and PATH_INFO values present in the WSGI environment are fixed
up before the application is invoked.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

ZCML Directives

Comprehensive reference material for every ZCML directive provided by
Pyramid is available within this chapter. The ZCML directive
documentation is organized alphabetically by directive name.

	aclauthorizationpolicy

	adapter

	authtktauthenticationpolicy

	asset

	configure

	default_permission

	forbidden

	handler

	include

	localenegotiator

	notfound

	remoteuserauthenticationpolicy

	renderer

	repozewho1authenticationpolicy

	route

	scan

	static

	subscriber

	translationdir

	utility

	view

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

configure

Because ZCML is XML, and because XML requires a single root
tag for each document, every ZCML file used by Pyramid must
contain a configure container directive, which acts as the root
XML tag. It is a “container” directive because its only job is to
contain other directives.

Attributes

	xmlns

	The default XML namespace used for subdirectives.

Example

	1
2
3
4
5

	<configure xmlns="http://pylonshq.com/pyramid">

 <!-- other directives -->

</configure>

A Word On XML Namespaces

Usually, the start tag of the <configure> container tag has a
default XML namespace associated with it. This is usually
http://pylonshq.com/pyramid, named by the xmlns attribute of
the configure start tag.

Using the http://pylonshq.com/pyramid namespace as the default XML
namespace isn’t strictly necessary; you can use a different default
namespace as the default. However, if you do, the declaration tags
which are defined by Pyramid such as the view declaration
tag will need to be defined in such a way that the XML parser that
Pyramid uses knows which namespace the pyramid tags are
associated with. For example, the following files are all completely
equivalent:

Use of A Non-Default XML Namespace

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 <configure xmlns="http://namespaces.zope.org/zope"
 xmlns:pyramid="http://pylonshq.com/pyramid">

 <include package="pyramid.includes" />

 <pyramid:view
 view="helloworld.hello_world"
 />

 </configure>

Use of A Per-Tag XML Namespace Without A Default XML Namespace

	1
2
3
4
5
6
7
8
9

	 <configure>

 <include package="pyramid.includes" />

 <view xmlns="http://pylonshq.com/pyramid"
 view="helloworld.hello_world"
 />

 </configure>

For more information about XML namespaces, see this older, but simple
XML.com article [http://www.xml.com/pub/a/1999/01/namespaces.html].

The conventions in this document assume that the default XML namespace
is http://pylonshq.com/pyramid.

Alternatives

None.

See Also

See also Hello World, Goodbye World (Declarative).

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

default_permission

Set the default permission to be used by all view
configuration registrations.

This directive accepts a single attribute ,``name``, which should be
used as the default permission string. An example of a permission
string: view. Adding a default permission makes it unnecessary to
protect each view configuration with an explicit permission, unless
your application policy requires some exception for a particular view.

If a default permission is not set, views represented by view
configuration registrations which do not explicitly declare a
permission will be executable by entirely anonymous users (any
authorization policy is ignored).

There can be only one default permission active at a time within an
application, thus the default_permission directive can only be
used once in any particular set of ZCML.

Attributes

	name

	Must be a string representing a permission,
e.g. view.

Example

	1
2
3

	<default_permission
 name="view"
 />

Alternatives

Using the default_permission argument to the
pyramid.config.Configurator constructor can be used
to achieve the same purpose.

Using the
pyramid.config.Configurator.set_default_permission()
method can be used to achieve the same purpose when using imperative
configuration.

See Also

See also Setting a Default Permission.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

repozewho1authenticationpolicy

When this directive is used, authentication information is obtained
from a repoze.who.identity key in the WSGI environment, assumed to
be set by repoze.who middleware.

Attributes

	identifier_name

	The identifier_name controls the name used to look up the
repoze.who “identifier” plugin within
request.environ['repoze.who.plugins'] which is used by this
policy to “remember” and “forget” credentials. It defaults to
auth_tkt.

	callback

	The callback is a Python dotted name to a function passed the
repoze.who identity and the request as positional arguments. The
callback is expected to return None if the user represented by the
identity doesn’t exist or a sequence of group identifiers
(possibly empty) if the user does exist. If callback is None,
the userid will be assumed to exist with no groups. It defaults
to None.

Example

	1
2
3
4

	<repozewho1authenticationpolicy
 identifier_name="auth_tkt"
 callback=".somemodule.somefunc"
 />

Alternatives

You may create an instance of the
pyramid.authentication.RepozeWho1AuthenticationPolicy and
pass it to the pyramid.config.Configurator
constructor as the authentication_policy argument during initial
application configuration.

See Also

See also Built-In Authentication Policy ZCML Directives and
pyramid.authentication.RepozeWho1AuthenticationPolicy.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

translationdir

Add a gettext translation directory to the current
configuration for use in localization of text.

Attributes

	dir

	The path to the translation directory. This path may either be 1)
absolute (e.g. /foo/bar/baz) 2) Python-package-relative
(e.g. packagename:foo/bar/baz) or 3) relative to the package
directory in which the ZCML file which contains the directive
(e.g. foo/bar/baz).

Example 1

	1
2
3
4
5

	<!-- relative to configure.zcml file -->

<translationdir
 dir="locale"
 />

Example 2

	1
2
3
4
5

	<!-- relative to another package -->

<translationdir
 dir="another.package:locale"
 />

Example 3

	1
2
3
4
5

	<!-- an absolute directory name -->

<translationdir
 dir="/usr/share/locale"
 />

Alternatives

Use pyramid.config.Configurator.add_translation_dirs()
method instance during initial application setup.

See Also

See also Activating Translation.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

utility

Register a Zope Component Architecture “utility”.

Attributes

	component

	The utility component (cannot be specified if factory is
specified).

	factory

	A factory that creates a component (cannot be specified if
component is specified).

	provides

	The interface that an utility instance resulting from a
lookup will provide.

	name

	The utility name.

Example

	1
2
3
4

	<utility
 provides=".interfaces.IMyUtility"
 component=".utilities.MyUtility"
 />

Alternatives

Use the registerUtility method of the registry attribute of a
Configurator instance during initial application setup.

See Also

None.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

 	ZCML Directives

view

A view declaration directs Pyramid to create a single
view configuration registration in the current
application registry.

The view

 Pyramid Change History

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Pyramid Change History

1.0a7 (2010-12-20)

Terminology Changes

	The Pyramid concept previously known as “model” is now known as “resource”.
As a result:

	The following API changes have been made:

pyramid.url.model_url ->
 pyramid.url.resource_url

pyramid.traversal.find_model ->
 pyramid.url.find_resource

pyramid.traversal.model_path ->
 pyramid.traversal.resource_path

pyramid.traversal.model_path_tuple ->
 pyramid.traversal.resource_path_tuple

pyramid.traversal.ModelGraphTraverser ->
 pyramid.traversal.ResourceTreeTraverser

pyramid.config.Configurator.testing_models ->
 pyramid.config.Configurator.testing_resources

pyramid.testing.registerModels ->
 pyramid.testing.registerResources

pyramid.testing.DummyModel ->
 pyramid.testing.DummyResource

	All documentation which previously referred to “model” now refers to
“resource”.

	The starter and starter_zcml paster templates now have a
resources.py module instead of a models.py module.

	Positional argument names of various APIs have been changed from
model to resource.

Backwards compatibility shims have been left in place in all cases. They
will continue to work “forever”.

	The Pyramid concept previously known as “resource” is now known as “asset”.
As a result:

	The (non-API) module previously known as pyramid.resource is now
known as pyramid.asset.

	All docs that previously referred to “resource specification” now refer
to “asset specification”.

	The following API changes were made:

pyramid.config.Configurator.absolute_resource_spec ->
 pyramid.config.Configurator.absolute_asset_spec

pyramid.config.Configurator.override_resource ->
 pyramid.config.Configurator.override_asset

	The ZCML directive previously known as resource is now known as
asset.

	The setting previously known as BFG_RELOAD_RESOURCES (envvar) or
reload_resources (config file) is now known, respectively, as
PYRAMID_RELOAD_ASSETS and reload_assets.

Backwards compatibility shims have been left in place in all cases. They
will continue to work “forever”.

Bug Fixes

	Make it possible to succesfully run all tests via nosetests command
directly (rather than indirectly via python setup.py nosetests).

	When a configuration conflict is encountered during scanning, the conflict
exception now shows the decorator information that caused the conflict.

Features

	Added debug_routematch configuration setting that logs matched routes
(including the matchdict and predicates).

	The name registry is now available in a pshell environment by
default. It is the application registry object.

Environment

	All environment variables which used to be prefixed with BFG_ are now
prefixed with PYRAMID_ (e.g. BFG_DEBUG_NOTFOUND is now
PYRAMID_DEBUG_NOTFOUND)

Documentation

	Added “Debugging Route Matching” section to the urldispatch narrative
documentation chapter.

	Added reference to PYRAMID_DEBUG_ROUTEMATCH envvar and debug_routematch
config file setting to the Environment narrative docs chapter.

	Changed “Project” chapter slightly to expand on use of paster pshell.

	Direct Jython users to Mako rather than Jinja2 in “Install” narrative
chapter.

	Many changes to support terminological renaming of “model” to “resource”
and “resource” to “asset”.

	Added an example of WebTest functional testing to the testing narrative
chapter.

	Rearranged chapter ordering by popular demand (URL dispatch first, then
traversal). Put hybrid chapter after views chapter.

	Split off “Renderers” as its own chapter from “Views” chapter in narrative
documentation.

Paster Templates

	Added debug_routematch = false to all paster templates.

Dependencies

	Depend on Venusian >= 0.5 (for scanning conflict exception decoration).

1.0a6 (2010-12-15)

Bug Fixes

	1.0a5 introduced a bug when pyramid.config.Configurator.scan was used
without a package argument (e.g. config.scan() as opposed to
config.scan('packagename'). The symptoms were: lots of deprecation
warnings printed to the console about imports of deprecated Pyramid
functions and classes and non-detection of view callables decorated with
view_config decorators. This has been fixed.

	Tests now pass on Windows (no bugs found, but a few tests in the test suite
assumed UNIX path segments in filenames).

Documentation

	If you followed it to-the-letter, the ZODB+Traversal Wiki tutorial would
instruct you to run a test which would fail because the view callable
generated by the pyramid_zodb tutorial used a one-arg view callable,
but the test in the sample code used a two-arg call.

	Updated ZODB+Traversal tutorial setup.py of all steps to match what’s
generated by pyramid_zodb.

	Fix reference to repoze.bfg.traversalwrapper in “Models” chapter (point
at pyramid_traversalwrapper instead).

1.0a5 (2010-12-14)

Features

	Add a handler ZCML directive. This directive does the same thing as
pyramid.configuration.add_handler.

	A new module named pyramid.config was added. It subsumes the duties of
the older pyramid.configuration module.

	The new pyramid.config.Configurator` class has API methods that the older
``pyramid.configuration.Configurator class did not: with_context (a
classmethod), include, action, and commit. These methods exist
for imperative application extensibility purposes.

	The pyramid.testing.setUp function now accepts an autocommit
keyword argument, which defaults to True. If it is passed False,
the Config object returned by setUp will be a non-autocommiting Config
object.

	Add logging configuration to all paster templates.

	pyramid_alchemy, pyramid_routesalchemy, and pylons_sqla paster
templates now use idiomatic SQLAlchemy configuration in their respective
.ini files and Python code.

	pyramid.testing.DummyRequest now has a class variable,
query_string, which defaults to the empty string.

	Add support for json on GAE by catching NotImplementedError and importing
simplejson from django.utils.

	The Mako renderer now accepts a resource specification for
mako.module_directory.

	New boolean Mako settings variable mako.strict_undefined. See Mako
Context Variables [http://www.makotemplates.org/docs/runtime.html#context-variables] for
its meaning.

Dependencies

	Depend on Mako 0.3.6+ (we now require the strict_undefined feature).

Bug Fixes

	When creating a Configurator from within a paster pshell session, you
were required to pass a package argument although package is not
actually required. If you didn’t pass package, you would receive an
error something like KeyError: '__name__' emanating from the
pyramid.path.caller_module function. This has now been fixed.

	The pyramid_routesalchemy paster template’s unit tests failed
(AssertionError: 'SomeProject' != 'someproject'). This is fixed.

	Make default renderer work (renderer factory registered with no name, which
is active for every view unless the view names a specific renderer).

	The Mako renderer did not properly turn the mako.imports,
mako.default_filters, and mako.imports settings into lists.

	The Mako renderer did not properly convert the mako.error_handler
setting from a dotted name to a callable.

Documentation

	Merged many wording, readability, and correctness changes to narrative
documentation chapters from https://github.com/caseman/pyramid (up to and
including “Models” narrative chapter).

	“Sample Applications” section of docs changed to note existence of Cluegun,
Shootout and Virginia sample applications, ported from their repoze.bfg
origin packages.

	SQLAlchemy+URLDispatch tutorial updated to integrate changes to
pyramid_routesalchemy template.

	Add pyramid.interfaces.ITemplateRenderer interface to Interfaces API
chapter (has implementation() method, required to be used when getting
at Chameleon macros).

	Add a “Modifying Package Structure” section to the project narrative
documentation chapter (explain turning a module into a package).

	Documentation was added for the new handler ZCML directive in the ZCML
section.

Deprecations

	pyramid.configuration.Configurator is now deprecated. Use
pyramid.config.Configurator, passing its constructor
autocommit=True instead. The pyramid.configuration.Configurator
alias will live for a long time, as every application uses it, but its
import now issues a deprecation warning. The
pyramid.config.Configurator class has the same API as
pyramid.configuration.Configurator class, which it means to replace,
except by default it is a non-autocommitting configurator. The
now-deprecated pyramid.configuration.Configurator will autocommit every
time a configuration method is called.

The pyramid.configuration module remains, but it is deprecated. Use
pyramid.config instead.

1.0a4 (2010-11-21)

Features

	URL Dispatch now allows for replacement markers to be located anywhere
in the pattern, instead of immediately following a /.

	URL Dispatch now uses the form {marker} to denote a replace marker in
the route pattern instead of :marker. The old colon-style marker syntax
is still accepted for backwards compatibility. The new format allows a
regular expression for that marker location to be used instead of the
default [^/]+, for example {marker:\d+} is now valid to require the
marker to be digits.

	Add a pyramid.url.route_path API, allowing folks to generate relative
URLs. Calling route_path is the same as calling
pyramid.url.route_url with the argument _app_url equal to the empty
string.

	Add a pyramid.request.Request.route_path API. This is a convenience
method of the request which calls pyramid.url.route_url.

	Make test suite pass on Jython (requires PasteScript trunk, presumably to
be 1.7.4).

	Make test suite pass on PyPy (Chameleon doesn’t work).

	Surrounding application configuration with config.begin() and
config.end() is no longer necessary. All paster templates have been
changed to no longer call these functions.

	Fix configurator to not convert ImportError to ConfigurationError
if the import that failed was unrelated to the import requested via a
dotted name when resolving dotted names (such as view dotted names).

Documentation

	SQLAlchemy+URLDispatch and ZODB+Traversal tutorials have been updated to
not call config.begin() or config.end().

Bug Fixes

	Add deprecation warnings to import of pyramid.chameleon_text and
pyramid.chameleon_zpt of get_renderer, get_template,
render_template, and render_template_to_response.

	Add deprecation warning for import of pyramid.zcml.zcml_configure and
pyramid.zcml.file_configure.

	The pyramid_alchemy paster template had a typo, preventing an import
from working.

	Fix apparent failures when calling pyramid.traversal.find_model(root,
path) or pyramid.traversal.traverse(path) when path is
(erroneously) a Unicode object. The user is meant to pass these APIs a
string object, never a Unicode object. In practice, however, users indeed
pass Unicode. Because the string that is passed must be ASCII encodeable,
now, if they pass a Unicode object, its data is eagerly converted to an
ASCII string rather than being passed along to downstream code as a
convenience to the user and to prevent puzzling second-order failures from
cropping up (all failures will occur within pyramid.traversal.traverse
rather than later down the line as the result of calling e.g.
traversal_path).

Backwards Incompatibilities

	The pyramid.testing.zcml_configure API has been removed. It had been
advertised as removed since repoze.bfg 1.2a1, but hadn’t actually been.

Deprecations

	The pyramid.settings.get_settings API is now deprecated. Use
pyramid.threadlocals.get_current_registry().settings instead or use the
settings attribute of the registry available from the request
(request.registry.settings).

Documentation

	Removed zodbsessions tutorial chapter. It’s still useful, but we now
have a SessionFactory abstraction which competes with it, and maintaining
documentation on both ways to do it is a distraction.

Internal

	Replace Twill with WebTest in internal integration tests (avoid deprecation
warnings generated by Twill).

1.0a3 (2010-11-16)

Features

	Added Mako TemplateLookup settings for mako.error_handler,
mako.default_filters, and mako.imports.

	Normalized all paster templates: each now uses the name main to
represent the function that returns a WSGI application, each now uses
WebError, each now has roughly the same shape of development.ini style.

	Added class vars matchdict and matched_route to
pyramid.request.Request. Each is set to None.

	New API method: pyramid.settings.asbool.

	New API methods for pyramid.request.Request: model_url,
route_url, and static_url. These are simple passthroughs for their
respective functions in pyramid.url.

	The settings object which used to be available only when
request.settings.get_settings was called is now available as
registry.settings (e.g. request.registry.settings in view code).

Bug Fixes

	The pylons_* paster templates erroneously used the {squiggly} routing
syntax as the pattern supplied to add_route. This style of routing is
not supported. They were replaced with :colon style route patterns.

	The pylons_* paster template used the same string
(your_app_secret_string) for the session.secret setting in the
generated development.ini. This was a security risk if left unchanged
in a project that used one of the templates to produce production
applications. It now uses a randomly generated string.

Documentation

	ZODB+traversal wiki (wiki) tutorial updated due to changes to
pyramid_zodb paster template.

	SQLAlchemy+urldispach wiki (wiki2) tutorial updated due to changes to
pyramid_routesalchemy paster template.

	Documented the matchdict and matched_route attributes of the
request object in the Request API documentation.

Deprecations

	Obtaining the settings object via
registry.{get|query}Utility(ISettings) is now deprecated. Instead,
obtain the settings object via the registry.settings attribute. A
backwards compatibility shim was added to the registry object to register
the settings object as an ISettings utility when setattr(registry,
'settings', foo) is called, but it will be removed in a later release.

	Obtaining the settings object via pyramid.settings.get_settings is
now deprecated. Obtain it as the settings attribute of the registry
now (obtain the registry via pyramid.threadlocal.get_registry or as
request.registry).

Behavior Differences

	Internal: ZCML directives no longer call get_current_registry() if there’s
a registry attribute on the ZCML context (kill off use of
threadlocals).

	Internal: Chameleon template renderers now accept two arguments: path
and lookup. Lookup will be an instance of a lookup class which
supplies (late-bound) arguments for debug, reload, and translate. Any
third-party renderers which use (the non-API) function
pyramid.renderers.template_renderer_factory will need to adjust their
implementations to obey the new callback argument list. This change was to
kill off inappropriate use of threadlocals.

1.0a2 (2010-11-09)

Documentation

	All references to events by interface
(e.g. pyramid.interfaces.INewRequest) have been changed to reference
their concrete classes (e.g. pyramid.events.NewRequest) in
documentation about making subscriptions.

	All references to Pyramid-the-application were changed from mod-pyramid
to app-Pyramid. A custom role setting was added to docs/conf.py to
allow for this. (internal)

1.0a1 (2010-11-05)

Features (delta from BFG 1.3)

	Mako templating renderer supports resource specification format for
template lookups and within Mako templates. Absolute filenames must
be used in Pyramid to avoid this lookup process.

	Add pyramid.httpexceptions module, which is a facade for the
webob.exc module.

	Direct built-in support for the Mako templating language.

	A new configurator method exists: add_handler. This method adds
a Pylons-style “view handler” (such a thing used to be called a
“controller” in Pylons 1.0).

	New argument to configurator: session_factory.

	New method on configurator: set_session_factory

	Using request.session now returns a (dictionary-like) session
object if a session factory has been configured.

	The request now has a new attribute: tmpl_context for benefit of
Pylons users.

	The decorator previously known as pyramid.view.bfg_view is now
known most formally as pyramid.view.view_config in docs and
paster templates. An import of pyramid.view.bfg_view, however,
will continue to work “forever”.

	New API methods in pyramid.session: signed_serialize and
signed_deserialize.

	New interface: pyramid.interfaces.IRendererInfo. An object of this type
is passed to renderer factory constructors (see “Backwards
Incompatibilities”).

	New event type: pyramid.interfaces.IBeforeRender. An object of this type
is sent as an event before a renderer is invoked (but after the
application-level renderer globals factory added via
pyramid.configurator.configuration.set_renderer_globals_factory, if any,
has injected its own keys). Applications may now subscribe to the
IBeforeRender event type in order to introspect the and modify the set of
renderer globals before they are passed to a renderer. The event object
iself has a dictionary-like interface that can be used for this purpose. For
example:

from repoze.events import subscriber
from pyramid.interfaces import IRendererGlobalsEvent

@subscriber(IRendererGlobalsEvent)
def add_global(event):
 event['mykey'] = 'foo'

If a subscriber attempts to add a key that already exist in the renderer
globals dictionary, a KeyError is raised. This limitation is due to the
fact that subscribers cannot be ordered relative to each other. The set of
keys added to the renderer globals dictionary by all subscribers and
app-level globals factories must be unique.

	New class: pyramid.response.Response. This is a pure facade for
webob.Response (old code need not change to use this facade, it’s
existence is mostly for vanity and documentation-generation purposes).

	All preexisting paster templates (except zodb) now use “imperative”
configuration (starter, routesalchemy, alchemy).

	A new paster template named pyramid_starter_zcml exists, which uses
declarative configuration.

Documentation (delta from BFG 1.3)

	Added a pyramid.httpexceptions API documentation chapter.

	Added a pyramid.session API documentation chapter.

	Added a Session Objects narrative documentation chapter.

	Added an API chapter for the pyramid.personality module.

	Added an API chapter for the pyramid.response module.

	All documentation which previously referred to webob.Response now uses
pyramid.response.Response instead.

	The documentation has been overhauled to use imperative configuration,
moving declarative configuration (ZCML) explanations to a separate
narrative chapter declarative.rst.

	The ZODB Wiki tutorial was updated to take into account changes to the
pyramid_zodb paster template.

	The SQL Wiki tutorial was updated to take into account changes to the
pyramid_routesalchemy paster template.

Backwards Incompatibilities (with BFG 1.3)

	There is no longer an IDebugLogger registered as a named utility
with the name repoze.bfg.debug.

	The logger which used to have the name of repoze.bfg.debug now
has the name pyramid.debug.

	The deprecated API pyramid.testing.registerViewPermission
has been removed.

	The deprecated API named pyramid.testing.registerRoutesMapper
has been removed.

	The deprecated API named pyramid.request.get_request was removed.

	The deprecated API named pyramid.security.Unauthorized was
removed.

	The deprecated API named pyramid.view.view_execution_permitted
was removed.

	The deprecated API named pyramid.view.NotFound was removed.

	The bfgshell paster command is now named pshell.

	The Venusian “category” for all built-in Venusian decorators
(e.g. subscriber and view_config/bfg_view) is now
pyramid instead of bfg.

	pyramid.renderers.rendered_response function removed; use
render_pyramid.renderers.render_to_response instead.

	Renderer factories now accept a renderer info object rather than an
absolute resource specification or an absolute path. The object has the
following attributes: name (the renderer= value), package (the
‘current package’ when the renderer configuration statement was found),
type: the renderer type, registry: the current registry, and
settings: the deployment settings dictionary.

Third-party repoze.bfg renderer implementations that must be ported to
Pyramid will need to account for this.

This change was made primarily to support more flexible Mako template
rendering.

	The presence of the key repoze.bfg.message in the WSGI environment when
an exception occurs is now deprecated. Instead, code which relies on this
environ value should use the exception attribute of the request
(e.g. request.exception[0]) to retrieve the message.

	The values bfg_localizer and bfg_locale_name kept on the request
during internationalization for caching purposes were never APIs. These
however have changed to localizer and locale_name, respectively.

	The default cookie_name value of the authtktauthenticationpolicy ZCML
now defaults to auth_tkt (it used to default to repoze.bfg.auth_tkt).

	The default cookie_name value of the
pyramid.authentication.AuthTktAuthenticationPolicy constructor now
defaults to auth_tkt (it used to default to repoze.bfg.auth_tkt).

	The request_type argument to the view ZCML directive, the
pyramid.configuration.Configurator.add_view method, or the
pyramid.view.view_config decorator (nee bfg_view) is no longer
permitted to be one of the strings GET, HEAD, PUT, POST or
DELETE, and now must always be an interface. Accepting the
method-strings as request_type was a backwards compatibility strategy
servicing repoze.bfg 1.0 applications. Use the request_method
parameter instead to specify that a view a string request-method predicate.

repoze.bfg Change History (previous name for Pyramid)

1.3b1 (2010-10-25)

Features

	The paster template named bfg_routesalchemy has been updated
to use SQLAlchemy declarative syntax. Thanks to Ergo^.

Bug Fixes

	When a renderer factory could not be found, a misleading error
message was raised if the renderer name was not a string.

Documentation

	The “”bfgwiki2” (SQLAlchemy + url dispatch) tutorial has been
updated slightly. In particular, the source packages no longer
attempt to use a private index, and the recommended Python version
is now 2.6. It was also updated to take into account the changes to
the bfg_routesalchemy template used to set up an environment.

	The “bfgwiki” (ZODB + traversal) tutorial has been updated slightly.
In particular, the source packages no longer attempt to use a
private index, and the recommended Python version is now 2.6.

1.3a15 (2010-09-30)

Features

	The repoze.bfg.traversal.traversal_path API now eagerly attempts
to encode a Unicode path into ASCII before attempting to split
it and decode its segments. This is for convenience, effectively to
allow a (stored-as-Unicode-in-a-database, or
retrieved-as-Unicode-from-a-request-parameter) Unicode path to be
passed to find_model, which eventually internally uses the
traversal_path function under the hood. In version 1.2 and
prior, if the path was Unicode, that Unicode was split on
slashes and each resulting segment value was Unicode. An
inappropriate call to the decode() method of a resulting Unicode
path segment could cause a UnicodeDecodeError to occur even if
the Unicode representation of the path contained no ‘high order’
characters (it effectively did a “double decode”). By converting
the Unicode path argument to ASCII before we attempt to decode and
split, genuine errors will occur in a more obvious place while also
allowing us to handle (for convenience) the case that it’s a Unicode
representation formed entirely from ASCII-compatible characters.

1.3a14 (2010-09-14)

Bug Fixes

	If an exception view was registered through the legacy
set_notfound_view or set_forbidden_view APIs, the context
sent to the view was incorrect (could be None inappropriately).

Features

	Compatibility with WebOb 1.0.

Requirements

	Now requires WebOb >= 1.0.

Backwards Incompatibilities

	Due to changes introduced WebOb 1.0, the
repoze.bfg.request.make_request_ascii event subscriber no longer
works, so it has been removed. This subscriber was meant to be used
in a deployment so that code written before BFG 0.7.0 could run
unchanged. At this point, such code will need to be rewritten to
expect Unicode from request.GET, request.POST and
request.params or it will need to be changed to use
request.str_POST, request.str_GET and/or
request.str_params instead of the non-str versions of same,
as the non-str versions of the same APIs always now perform
decoding to Unicode.

Errata

	A prior changelog entry asserted that the INewResponse event was
not sent to listeners if the response was not “valid” (if a view or
renderer returned a response object that did not have a
status/headers/app_iter). This is not true in this release, nor was
it true in 1.3a13.

1.3a13 (2010-09-14)

Bug Fixes

	The traverse route predicate could not successfully generate a
traversal path.

Features

	In support of making it easier to configure applications which are
“secure by default”, a default permission feature was added. If
supplied, the default permission is used as the permission string to
all view registrations which don’t otherwise name a permission.
These APIs are in support of that:
	A new constructor argument was added to the Configurator:
default_permission.

	A new method was added to the Configurator:
set_default_permission.

	A new ZCML directive was added: default_permission.

	Add a new request API: request.add_finished_callback. Finished
callbacks are called by the router unconditionally near the very end
of request processing. See the “Using Finished Callbacks” section
of the “Hooks” narrative chapter of the documentation for more
information.

	A request.matched_route attribute is now added to the request
when a route has matched. Its value is the “route” object that
matched (see the IRoute interface within
repoze.bfg.interfaces API documentation for the API of a route
object).

	The exception attribute of the request is now set slightly
earlier and in a slightly different set of scenarios, for benefit of
“finished callbacks” and “response callbacks”. In previous
versions, the exception attribute of the request was not set at
all if an exception view was not found. In this version, the
request.exception attribute is set immediately when an exception
is caught by the router, even if an exception view could not be
found.

	The add_route method of a Configurator now accepts a
pregenerator argument. The pregenerator for the resulting route
is called by route_url in order to adjust the set of arguments
passed to it by the user for special purposes, such as Pylons
‘subdomain’ support. It will influence the URL returned by
route_url. See the repoze.bfg.interfaces.IRoutePregenerator
interface for more information.

Backwards Incompatibilities

	The router no longer sets the value wsgiorg.routing_args into
the environ when a route matches. The value used to be something
like ((), matchdict). This functionality was only ever
obliquely referred to in change logs; it was never documented as an
API.

	The exception attribute of the request now defaults to None.
In prior versions, the request.exception attribute did not exist
if an exception was not raised by user code during request
processing; it only began existence once an exception view was
found.

Deprecations

	The repoze.bfg.interfaces.IWSGIApplicationCreatedEvent event
interface was renamed to
repoze.bfg.interfaces.IApplicationCreated. Likewise, the
repoze.bfg.events.WSGIApplicationCreatedEvent class was renamed
to repoze.bfg.events.ApplicationCreated. The older aliases will
continue to work indefinitely.

	The repoze.bfg.interfaces.IAfterTraversal event interface was
renamed to repoze.bfg.interfaces.IContextFound. Likewise, the
repoze.bfg.events.AfterTraversal class was renamed to
repoze.bfg.events.ContextFound. The older aliases will continue
to work indefinitely.

	References to the WSGI environment values bfg.routes.matchdict
and bfg.routes.route were removed from documentation. These
will stick around internally for several more releases, but it is
request.matchdict and request.matched_route are now the
“official” way to obtain the matchdict and the route object which
resulted in the match.

Documentation

	Added documentation for the default_permission ZCML directive.

	Added documentation for the default_permission constructor value
and the set_default_permission method in the Configurator API
documentation.

	Added a new section to the “security” chapter named “Setting a
Default Permission”.

	Document renderer_globals_factory and request_factory
arguments to Configurator constructor.

	Added two sections to the “Hooks” chapter of the documentation:
“Using Response Callbacks” and “Using Finished Callbacks”.

	Added documentation of the request.exception attribute to the
repoze.bfg.request.Request API documentation.

	Added glossary entries for “response callback” and “finished
callback”.

	The “Request Processing” narrative chapter has been updated to note
finished and response callback steps.

	New interface in interfaces API documentation: IRoutePregenerator.

	Added a “The Matched Route” section to the URL Dispatch narrative
docs chapter, detailing the matched_route attribute.

1.3a12 (2010-09-08)

Bug Fixes

	Fix a bug in repoze.bfg.url.static_url URL generation: if two
resource specifications were used to create two separate static
views, but they shared a common prefix, it was possible that
static_url would generate an incorrect URL.

	Fix another bug in repoze.bfg.static_url URL generation: too
many slashes in generated URL.

	Prevent a race condition which could result in a RuntimeError
when rendering a Chameleon template that has not already been
rendered once. This would usually occur directly after a restart,
when more than one person or thread is trying to execute the same
view at the same time: https://bugs.launchpad.net/karl3/+bug/621364

Features

	The argument to repoze.bfg.configuration.Configurator.add_route
which was previously called path is now called pattern for
better explicability. For backwards compatibility purposes, passing
a keyword argument named path to add_route will still work
indefinitely.

	The path attribute to the ZCML route directive is now named
pattern for better explicability. The older path attribute
will continue to work indefinitely.

Documentation

	All narrative, API, and tutorial docs which referred to a route
pattern as a path have now been updated to refer to them as a
pattern.

	The repoze.bfg.interfaces API documentation page is now rendered
via repoze.sphinx.autointerface.

	The URL Dispatch narrative chapter now refers to the interfaces
chapter to explain the API of an IRoute object.

Paster Templates

	The routesalchemy template has been updated to use pattern in
its route declarations rather than path.

Dependencies

	tests_require now includes repoze.sphinx.autointerface as a
dependency.

Internal

	Add an API to the Configurator named get_routes_mapper.
This returns an object implementing the IRoutesMapper interface.

	The repoze.bfg.urldispatch.RoutesMapper object now has a
get_route method which returns a single Route object or
None.

	A new interface repoze.bfg.interfaces.IRoute was added. The
repoze.bfg.urldispatch.Route object implements this interface.

	The canonical attribute for accessing the routing pattern from a
route object is now pattern rather than path.

	Use hash() rather than id() when computing the “phash” of a
custom route/view predicate in order to allow the custom predicate
some control over which predicates are “equal”.

	Use response.headerlist.append instead of
response.headers.add in
repoze.bfg.request.add_global_response_headers in case the
response is not a WebOb response.

	The repoze.bfg.urldispatch.Route constructor (not an API) now
accepts a different ordering of arguments. Previously it was
(pattern, name, factory=None, predicates=()). It is now
(name, pattern, factory=None, predicates=()). This is in
support of consistency with configurator.add_route.

	The repoze.bfg.urldispatch.RoutesMapper.connect method (not an
API) now accepts a different ordering of arguments. Previously it
was (pattern, name, factory=None, predicates=()). It is now
(name, pattern, factory=None, predicates=()). This is in
support of consistency with configurator.add_route.

1.3a11 (2010-09-05)

Bug Fixes

	Process the response callbacks and the NewResponse event earlier, to
enable mutations to the response to take effect.

1.3a10 (2010-09-05)

Features

	A new repoze.bfg.request.Request.add_response_callback API has
been added. This method is documented in the new
repoze.bfg.request API chapter. It can be used to influence
response values before a concrete response object has been created.

	The repoze.bfg.interfaces.INewResponse interface now includes a
request attribute; as a result, a handler for INewResponse now
has access to the request which caused the response.

	Each of the follow methods of the Configurator now allow the
below-named arguments to be passed as “dotted name strings”
(e.g. “foo.bar.baz”) rather than as actual implementation objects
that must be imported:

	setup_registry

	root_factory, authentication_policy, authorization_policy,
debug_logger, locale_negotiator, request_factory,
renderer_globals_factory

	add_subscriber

	subscriber, iface

	derive_view

	view

	add_view

	view, for_, context, request_type, containment

	add_route()

	view, view_for, factory, for_, view_context

	scan

	package

	add_renderer

	factory

	set_forbidden_view

	view

	set_notfound_view

	view

	set_request_factory

	factory

	set_renderer_globals_factory()

	factory

	set_locale_negotiator

	negotiator

	testing_add_subscriber

	event_iface

Bug Fixes

	The route pattern registered internally for a a local “static view”
(either via the static ZCML directive or via the
add_static_view method of the configurator) was incorrect. It
was regsistered for e.g. static*traverse, while it should have
been registered for static/*traverse. Symptom: two static views
could not reliably be added to a system when they both shared the
same path prefix (e.g. /static and /static2).

Backwards Incompatibilities

	The INewResponse event is now not sent to listeners if the response
returned by view code (or a renderer) is not a “real” response
(e.g. if it does not have .status, .headerlist and
.app_iter attribtues).

Documentation

	Add an API chapter for the repoze.bfg.request module, which
includes documentation for the repoze.bfg.request.Request class
(the “request object”).

	Modify the “Request and Response” narrative chapter to reference the
new repoze.bfg.request API chapter. Some content was moved from
this chapter into the API documentation itself.

	Various changes to denote that Python dotted names are now allowed
as input to Configurator methods.

Internal

	The (internal) feature which made it possible to attach a
global_response_headers attribute to the request (which was
assumed to contain a sequence of header key/value pairs which would
later be added to the response by the router), has been removed.
The functionality of
repoze.bfg.request.Request.add_response_callback takes its
place.

	The repoze.bfg.events.NewResponse class’s construct has changed:
it now must be created with (request, response) rather than
simply (response).

1.3a9 (2010-08-22)

Features

	The Configurator now accepts a dotted name string to a package as
a package constructor argument. The package argument was
previously required to be a package object (not a dotted name
string).

	The repoze.bfg.configuration.Configurator.with_package method
was added. This method returns a new Configurator using the same
application registry as the configurator object it is called
upon. The new configurator is created afresh with its package
constructor argument set to the value passed to with_package.
This feature will make it easier for future BFG versions to allow
dotted names as arguments in places where currently only object
references are allowed (the work to allow dotted names isntead of
object references everywhere has not yet been done, however).

	The new repoze.bfg.configuration.Configurator.maybe_dotted
method resolves a Python dotted name string supplied as its
dotted argument to a global Python object. If the value cannot
be resolved, a repoze.bfg.configuration.ConfigurationError is
raised. If the value supplied as dotted is not a string, the
value is returned unconditionally without any resolution attempted.

	The new
repoze.bfg.configuration.Configurator.absolute_resource_spec
method resolves a potentially relative “resource specification”
string into an absolute version. If the value supplied as
relative_spec is not a string, the value is returned
unconditionally without any resolution attempted.

Backwards Incompatibilities

	The functions in repoze.bfg.renderers named render and
render_to_response introduced in 1.3a6 previously took a set of
**values arguments for the values to be passed to the renderer.
This was wrong, as renderers don’t need to accept only dictionaries
(they can accept any type of object). Now, the value sent to the
renderer must be supplied as a positional argument named value.
The request argument is still a keyword argument, however.

	The functions in repoze.bfg.renderers named render and
render_to_response now accept an additonal keyword argument
named package.

	The get_renderer API in repoze.bfg.renderers now accepts a
package argument.

Documentation

	The ZCML include directive docs were incorrect: they specified
filename rather than (the correct) file as an allowable
attribute.

Internal

	The repoze.bfg.resource.resolve_resource_spec function can now
accept a package object as its pname argument instead of just a
package name.

	The _renderer_factory_from_name and _renderer_from_name
methods of the Configurator were removed. These were never APIs.

	The _render, _render_to_response and _make_response
functions with repoze.bfg.render (added in 1.3a6) have been
removed.

	A new helper class repoze.bfg.renderers.RendererHelper was
added.

	The _map_view function of repoze.bfg.configuration now takes
only a renderer_name argument instead of both a renderer and
renderer``_name argument. It also takes a ``package argument
now.

	Use imp.get_suffixes indirection in
repoze.bfg.path.package_name instead of hardcoded .py
.pyc and .pyo to use for comparison when attemtping to
decide if a directory is a package.

	Make tests runnable again under Jython (although they do not all
pass currently).

	The reify decorator now maintains the docstring of the function it
wraps.

1.3a8 (2010-08-08)

Features

	New public interface: repoze.bfg.exceptions.IExceptionResponse.
This interface is provided by all internal exception classes (such
as repoze.bfg.exceptions.NotFound and
repoze.bfg.exceptions.Forbidden), instances of which are both
exception objects and can behave as WSGI response objects. This
interface is made public so that exception classes which are also
valid WSGI response factories can be configured to implement them or
exception instances which are also or response instances can be
configured to provide them.

	New API class: repoze.bfg.view.AppendSlashNotFoundViewFactory.

There can only be one Not Found view in any repoze.bfg
application. Even if you use
repoze.bfg.view.append_slash_notfound_view as the Not Found
view, repoze.bfg still must generate a 404 Not Found
response when it cannot redirect to a slash-appended URL; this not
found response will be visible to site users.

If you don’t care what this 404 response looks like, and you only
need redirections to slash-appended route URLs, you may use the
repoze.bfg.view.append_slash_notfound_view object as the Not
Found view. However, if you wish to use a custom notfound view
callable when a URL cannot be redirected to a slash-appended URL,
you may wish to use an instance of the
repoze.bfg.view.AppendSlashNotFoundViewFactory class as the Not
Found view, supplying the notfound view callable as the first
argument to its constructor. For instance:

from repoze.bfg.exceptions import NotFound
from repoze.bfg.view import AppendSlashNotFoundViewFactory

def notfound_view(context, request):
 return HTTPNotFound('It aint there, stop trying!')

custom_append_slash = AppendSlashNotFoundViewFactory(notfound_view)
config.add_view(custom_append_slash, context=NotFound)

The notfound_view supplied must adhere to the two-argument view
callable calling convention of (context, request) (context
will be the exception object).

Documentation

	Expanded the “Cleaning Up After a Request” section of the URL
Dispatch narrative chapter.

	Expanded the “Redirecting to Slash-Appended Routes” section of the
URL Dispatch narrative chapter.

Internal

	Previously, two default view functions were registered at
Configurator setup (one for repoze.bfg.exceptions.NotFound named
default_notfound_view and one for
repoze.bfg.exceptions.Forbidden named
default_forbidden_view) to render internal exception responses.
Those default view functions have been removed, replaced with a
generic default view function which is registered at Configurator
setup for the repoze.bfg.interfaces.IExceptionResponse interface
that simply returns the exception instance; the NotFound and
Forbidden classes are now still exception factories but they are
also response factories which generate instances that implement the
new repoze.bfg.interfaces.IExceptionResponse interface.

1.3a7 (2010-08-01)

Features

	The repoze.bfg.configuration.Configurator.add_route API now
returns the route object that was added.

	A repoze.bfg.events.subscriber decorator was added. This
decorator decorates module-scope functions, which are then treated
as event listeners after a scan() is performed. See the Events
narrative documentation chapter and the repoze.bfg.events module
documentation for more information.

Bug Fixes

	When adding a view for a route which did not yet exist (“did not yet
exist” meaning, temporally, a view was added with a route name for a
route which had not yet been added via add_route), the value of the
custom_predicate argument to add_view was lost. Symptom:
wrong view matches when using URL dispatch and custom view
predicates together.

	Pattern matches for a :segment marker in a URL dispatch route
pattern now always match at least one character. See “Backwards
Incompatibilities” below in this changelog.

Backwards Incompatibilities

	A bug existed in the regular expression to do URL matching. As an
example, the URL matching machinery would cause the pattern
/{foo} to match the root URL / resulting in a match
dictionary of {'foo':u''} or the pattern /{fud}/edit might
match the URL ``//edit resulting in a match dictionary of
{'fud':u''}. It was always the intent that :segment markers
in the pattern would need to match at least one character, and
never match the empty string. This, however, means that in certain
circumstances, a routing match which your application inadvertently
depended upon may no longer happen.

Documentation

	Added description of the repoze.bfg.events.subscriber decorator
to the Events narrative chapter.

	Added repoze.bfg.events.subscriber API documentation to
repoze.bfg.events API docs.

	Added a section named “Zope 3 Enforces ‘TTW’ Authorization Checks By
Default; BFG Does Not” to the “Design Defense” chapter.

1.3a6 (2010-07-25)

Features

	New argument to repoze.bfg.configuration.Configurator.add_route
and the route ZCML directive: traverse. If you would like
to cause the context to be something other than the root
object when this route matches, you can spell a traversal pattern as
the traverse argument. This traversal pattern will be used as
the traversal path: traversal will begin at the root object implied
by this route (either the global root, or the object returned by the
factory associated with this route).

The syntax of the traverse argument is the same as it is for
path. For example, if the path provided is
articles/:article/edit, and the traverse argument provided
is /:article, when a request comes in that causes the route to
match in such a way that the article match value is ‘1’ (when
the request URI is /articles/1/edit), the traversal path will be
generated as /1. This means that the root object’s
__getitem__ will be called with the name 1 during the
traversal phase. If the 1 object exists, it will become the
context of the request. The Traversal narrative has more
information about traversal.

If the traversal path contains segment marker names which are not
present in the path argument, a runtime error will occur. The
traverse pattern should not contain segment markers that do not
exist in the path.

A similar combining of routing and traversal is available when a
route is matched which contains a *traverse remainder marker in
its path. The traverse argument allows you to associate route
patterns with an arbitrary traversal path without using a a
*traverse remainder marker; instead you can use other match
information.

Note that the traverse argument is ignored when attached to a
route that has a *traverse remainder marker in its path.

	A new method of the Configurator exists:
set_request_factory. If used, this method will set the factory
used by the repoze.bfg router to create all request objects.

	The Configurator constructor takes an additional argument:
request_factory. If used, this argument will set the factory
used by the repoze.bfg router to create all request objects.

	The Configurator constructor takes an additional argument:
request_factory. If used, this argument will set the factory
used by the repoze.bfg router to create all request objects.

	A new method of the Configurator exists:
set_renderer_globals_factory. If used, this method will set the
factory used by the repoze.bfg router to create renderer
globals.

	A new method of the Configurator exists: get_settings. If
used, this method will return the current settings object (performs
the same job as the repoze.bfg.settings.get_settings API).

	The Configurator constructor takes an additional argument:
renderer_globals_factory. If used, this argument will set the
factory used by the repoze.bfg router to create renderer
globals.

	Add repoze.bfg.renderers.render,
repoze.bfg.renderers.render_to_response and
repoze.bfg.renderers.get_renderer functions. These are
imperative APIs which will use the same rendering machinery used by
view configurations with a renderer= attribute/argument to
produce a rendering or renderer. Because these APIs provide a
central API for all rendering, they now form the preferred way to
perform imperative template rendering. Using functions named
render_* from modules such as repoze.bfg.chameleon_zpt and
repoze.bfg.chameleon_text is now discouraged (although not
deprecated). The code the backing older templating-system-specific
APIs now calls into the newer repoze.bfg.renderer code.

	The repoze.bfg.configuration.Configurator.testing_add_template
has been renamed to testing_add_renderer. A backwards
compatibility alias is present using the old name.

Documentation

	The Hybrid narrative chapter now contains a description of the
traverse route argument.

	The Hooks narrative chapter now contains sections about
changing the request factory and adding a renderer globals factory.

	The API documentation includes a new module:
repoze.bfg.renderers.

	The Templates chapter was updated; all narrative that used
templating-specific APIs within examples to perform rendering (such
as the repoze.bfg.chameleon_zpt.render_template_to_response
method) was changed to use repoze.bfg.renderers.render_*
functions.

Bug Fixes

	The header predicate (when used as either a view predicate or a
route predicate) had a problem when specified with a name/regex
pair. When the header did not exist in the headers dictionary, the
regex match could be fed None, causing it to throw a
TypeError: expected string or buffer exception. Now, the
predicate returns False as intended.

Deprecations

	The repoze.bfg.renderers.rendered_response function was never an
official API, but may have been imported by extensions in the wild.
It is officially deprecated in this release. Use
repoze.bfg.renderers.render_to_response instead.

	The following APIs are documentation deprecated (meaning they are
officially deprecated in documentation but do not raise a
deprecation error upon their usage, and may continue to work for an
indefinite period of time):

In the repoze.bfg.chameleon_zpt module: get_renderer,
get_template, render_template,
render_template_to_response. The suggested alternatives are
documented within the docstrings of those methods (which are still
present in the documentation).

In the repoze.bfg.chameleon_text module: get_renderer,
get_template, render_template,
render_template_to_response. The suggested alternatives are
documented within the docstrings of those methods (which are still
present in the documentation).

In general, to perform template-related functions, one should now
use the various methods in the repoze.bfg.renderers module.

Backwards Incompatibilities

	A new internal exception class (not an API) named
repoze.bfg.exceptions.PredicateMismatch now exists. This
exception is currently raised when no constituent view of a
multiview can be called (due to no predicate match). Previously, in
this situation, a repoze.bfg.exceptions.NotFound was raised. We
provide backwards compatibility for code that expected a
NotFound to be raised when no predicates match by causing
repoze.bfg.exceptions.PredicateMismatch to inherit from
NotFound. This will cause any exception view registered for
NotFound to be called when a predicate mismatch occurs, as was
the previous behavior.

There is however, one perverse case that will expose a backwards
incompatibility. If 1) you had a view that was registered as a
member of a multiview 2) this view explicitly raised a NotFound
exception in order to proceed to the next predicate check in the
multiview, that code will now behave differently: rather than
skipping to the next view match, a NotFound will be raised to the
top-level exception handling machinery instead. For code to be
depending upon the behavior of a view raising NotFound to
proceed to the next predicate match, would be tragic, but not
impossible, given that NotFound is a public interface.
repoze.bfg.exceptions.PredicateMismatch is not a public API and
cannot be depended upon by application code, so you should not
change your view code to raise PredicateMismatch. Instead, move
the logic which raised the NotFound exception in the view out
into a custom view predicate.

	If, when you run your application’s unit test suite under BFG 1.3, a
KeyError naming a template or a ValueError indicating that a
‘renderer factory’ is not registered may is raised
(e.g. ValueError: No factory for renderer named '.pt' when looking
up karl.views:templates/snippets.pt), you may need to perform some
extra setup in your test code.

The best solution is to use the
repoze.bfg.configuration.Configurator.testing_add_renderer (or,
alternately the deprecated
repoze.bfg.testing.registerTemplateRenderer or
registerDummyRenderer) API within the code comprising each
individual unit test suite to register a “dummy” renderer for each
of the templates and renderers used by code under test. For
example:

config = Configurator()
config.testing_add_renderer('karl.views:templates/snippets.pt')

This will register a basic dummy renderer for this particular
missing template. The testing_add_renderer API actually
returns the renderer, but if you don’t care about how the render
is used, you don’t care about having a reference to it either.

A more rough way to solve the issue exists. It causes the “real”
template implementations to be used while the system is under test,
which is suboptimal, because tests will run slower, and unit tests
won’t actually be unit tests, but it is easier. Always ensure you
call the setup_registry() method of the Configurator . Eg:

reg = MyRegistry()
config = Configurator(registry=reg)
config.setup_registry()

Calling setup_registry only has an effect if you’re passing in
a registry argument to the Configurator constructor.
setup_registry is called by the course of normal operations
anyway if you do not pass in a registry.

If your test suite isn’t using a Configurator yet, and is still
using the older repoze.bfg.testing APIs name setUp or
cleanUp, these will register the renderers on your behalf.

A variant on the symptom for this theme exists: you may already be
dutifully registering a dummy template or renderer for a template
used by the code you’re testing using testing_register_renderer
or registerTemplateRenderer, but (perhaps unbeknownst to you)
the code under test expects to be able to use a “real” template
renderer implementation to retrieve or render another template
that you forgot was being rendered as a side effect of calling the
code you’re testing. This happened to work because it found the
real template while the system was under test previously, and now
it cannot. The solution is the same.

It may also help reduce confusion to use a resource specification
to specify the template path in the test suite and code rather than
a relative path in either. A resource specification is unambiguous,
while a relative path needs to be relative to “here”, where “here”
isn’t always well-defined (“here” in a test suite may or may not be
the same as “here” in the code under test).

1.3a5 (2010-07-14)

Features

	New internal exception: repoze.bfg.exceptions.URLDecodeError.
This URL is a subclass of the built-in Python exception named
UnicodeDecodeError.

	When decoding a URL segment to Unicode fails, the exception raised
is now repoze.bfg.exceptions.URLDecodeError instead of
UnicodeDecodeError. This makes it possible to register an
exception view invoked specifically when repoze.bfg cannot
decode a URL.

Bug Fixes

	Fix regression in
repoze.bfg.configuration.Configurator.add_static_view. Before
1.3a4, view names that contained a slash were supported as route
prefixes. 1.3a4 broke this by trying to treat them as full URLs.

Documentation

	The repoze.bfg.exceptions.URLDecodeError exception was added to
the exceptions chapter of the API documentation.

Backwards Incompatibilities

	in previous releases, when a URL could not be decoded from UTF-8
during traversal, a TypeError was raised. Now the error which
is raised is a repoze.bfg.exceptions.URLDecodeError.

1.3a4 (2010-07-03)

Features

	Undocumented hook: make get_app and get_root of the
repoze.bfg.paster.BFGShellCommand hookable in cases where
endware may interfere with the default versions.

	In earlier versions, a custom route predicate associated with a url
dispatch route (each of the predicate functions fed to the
custom_predicates argument of
repoze.bfg.configuration.Configurator.add_route) has always
required a 2-positional argument signature, e.g. (context,
request). Before this release, the context argument was
always None.

As of this release, the first argument passed to a predicate is now
a dictionary conventionally named info consisting of route,
and match. match is a dictionary: it represents the
arguments matched in the URL by the route. route is an object
representing the route which was matched.

This is useful when predicates need access to the route match. For
example:

def any_of(segment_name, *args):
 def predicate(info, request):
 if info['match'][segment_name] in args:
 return True
 return predicate

num_one_two_or_three = any_of('num, 'one', 'two', 'three')

add_route('num', '/:num', custom_predicates=(num_one_two_or_three,))

The route object is an object that has two useful attributes:
name and path. The name attribute is the route name.
The path attribute is the route pattern. An example of using
the route in a set of route predicates:

def twenty_ten(info, request):
 if info['route'].name in ('ymd', 'ym', 'y'):
 return info['match']['year'] == '2010'

add_route('y', '/:year', custom_predicates=(twenty_ten,))
add_route('ym', '/:year/:month', custom_predicates=(twenty_ten,))
add_route('ymd', '/:year/:month:/day', custom_predicates=(twenty_ten,))

	The repoze.bfg.url.route_url API has changed. If a keyword
_app_url is present in the arguments passed to route_url,
this value will be used as the protocol/hostname/port/leading path
prefix of the generated URL. For example, using an _app_url of
http://example.com:8080/foo would cause the URL
http://example.com:8080/foo/fleeb/flub to be returned from this
function if the expansion of the route pattern associated with the
route_name expanded to /fleeb/flub.

	It is now possible to use a URL as the name argument fed to
repoze.bfg.configuration.Configurator.add_static_view. When the
name argument is a URL, the repoze.bfg.url.static_url API will
generate join this URL (as a prefix) to a path including the static
file name. This makes it more possible to put static media on a
separate webserver for production, while keeping static media
package-internal and served by the development webserver during
development.

Documentation

	The authorization chapter of the ZODB Wiki Tutorial
(docs/tutorials/bfgwiki) was changed to demonstrate authorization
via a group rather than via a direct username (thanks to Alex
Marandon).

	The authorization chapter of the SQLAlchemy Wiki Tutorial
(docs/tutorials/bfgwiki2) was changed to demonstrate authorization
via a group rather than via a direct username.

	Redirect requests for tutorial sources to
http://docs.repoze.org/bfgwiki-1.3 and
http://docs.repoze.org/bfgwiki2-1.3/ respectively.

	A section named Custom Route Predicates was added to the URL
Dispatch narrative chapter.

	The Static Resources chapter has been updated to mention using
static_url to generate URLs to external webservers.

Internal

	Removed repoze.bfg.static.StaticURLFactory in favor of a new
abstraction revolving around the (still-internal)
repoze.bfg.static.StaticURLInfo helper class.

1.3a3 (2010-05-01)

Paster Templates

	The bfg_alchemy and bfg_routesalchemy templates no longer
register a handle_teardown event listener which calls
DBSession.remove. This was found by Chris Withers to be
unnecessary.

Documentation

	The “bfgwiki2” (URL dispatch wiki) tutorial code and documentation
was changed to remove the handle_teardown event listener which
calls DBSession.remove.

	Any mention of the handle_teardown event listener as used by the
paster templates was removed from the URL Dispatch narrative chapter.

	A section entitled Detecting Available Languages was added to the
i18n narrative docs chapter.

1.3a2 (2010-04-28)

Features

	A locale negotiator no longer needs to be registered explicitly. The
default locale negotiator at
repoze.bfg.i18n.default_locale_negotiator is now used
unconditionally as... um, the default locale negotiator.

	The default locale negotiator has become more complex.
	First, the negotiator looks for the _LOCALE_ attribute of
the request object (possibly set by a view or an event listener).

	Then it looks for the request.params['_LOCALE_'] value.

	Then it looks for the request.cookies['_LOCALE_'] value.

Backwards Incompatibilities

	The default locale negotiator now looks for the parameter named
LOCALE rather than a parameter named locale in
request.params.

Behavior Changes

	A locale negotiator may now return None, signifying that the
default locale should be used.

Documentation

	Documentation concerning locale negotiation in the
Internationalizationa and Localization chapter was updated.

	Expanded portion of i18n narrative chapter docs which discuss
working with gettext files.

1.3a1 (2010-04-26)

Features

	Added “exception views”. When you use an exception (anything that
inherits from the Python Exception builtin) as view context
argument, e.g.:

from repoze.bfg.view import bfg_view
from repoze.bfg.exceptions import NotFound
from webob.exc import HTTPNotFound

@bfg_view(context=NotFound)
def notfound_view(request):
 return HTTPNotFound()

For the above example, when the repoze.bfg.exceptions.NotFound
exception is raised by any view or any root factory, the
notfound_view view callable will be invoked and its response
returned.

Other normal view predicates can also be used in combination with an
exception view registration:

from repoze.bfg.view import bfg_view
from repoze.bfg.exceptions import NotFound
from webob.exc import HTTPNotFound

@bfg_view(context=NotFound, route_name='home')
def notfound_view(request):
 return HTTPNotFound()

The above exception view names the route_name of home,
meaning that it will only be called when the route matched has a
name of home. You can therefore have more than one exception
view for any given exception in the system: the “most specific” one
will be called when the set of request circumstances which match the
view registration. The only predicate that cannot be not be used
successfully is name. The name used to look up an exception
view is always the empty string.

Existing (pre-1.3) normal views registered against objects
inheriting from Exception will continue to work. Exception
views used for user-defined exceptions and system exceptions used as
contexts will also work.

The feature can be used with any view registration mechanism
(@bfg_view decorator, ZCML, or imperative config.add_view
styles).

This feature was kindly contributed by Andrey Popp.

	Use “Venusian” (http://docs.repoze.org/venusian) to perform bfg_view
decorator scanning rather than relying on a BFG-internal decorator
scanner. (Truth be told, Venusian is really just a generalization
of the BFG-internal decorator scanner).

	Internationalization and localization features as documented in the
narrative documentation chapter entitled Internationalization and
Localization.

	A new deployment setting named default_locale_name was added.
If this string is present as a Paster .ini file option, it will
be considered the default locale name. The default locale name is
used during locale-related operations such as language translation.

	It is now possible to turn on Chameleon template “debugging mode”
for all Chameleon BFG templates by setting a BFG-related Paster
.ini file setting named debug_templates. The exceptions
raised by Chameleon templates when a rendering fails are sometimes
less than helpful. debug_templates allows you to configure your
application development environment so that exceptions generated by
Chameleon during template compilation and execution will contain
more helpful debugging information. This mode is on by default in
all new projects.

	Add a new method of the Configurator named derive_view which can
be used to generate a BFG view callable from a user-supplied
function, instance, or class. This useful for external framework and
plugin authors wishing to wrap callables supplied by their users
which follow the same calling conventions and response conventions
as objects that can be supplied directly to BFG as a view callable.
See the derive_view method in the
repoze.bfg.configuration.Configurator docs.

ZCML

	Add a translationdir ZCML directive to support localization.

	Add a localenegotiator ZCML directive to support localization.

Deprecations

	The exception views feature replaces the need for the
set_notfound_view and set_forbidden_view methods of the
Configurator as well as the notfound and forbidden ZCML
directives. Those methods and directives will continue to work for
the foreseeable future, but they are deprecated in the
documentation.

Dependencies

	A new install-time dependency on the venusian distribution was
added.

	A new install-time dependency on the translationstring
distribution was added.

	Chameleon 1.2.3 or better is now required (internationalization and
per-template debug settings).

Internal

	View registrations and lookups are now done with three “requires”
arguments instead of two to accomodate orthogonality of exception
views.

	The repoze.bfg.interfaces.IForbiddenView and
repoze.bfg.interfaces.INotFoundView interfaces were removed;
they weren’t APIs and they became vestigial with the addition of
exception views.

	Remove repoze.bfg.compat.pkgutil_26.py and import alias
repoze.bfg.compat.walk_packages. These were only required by
internal scanning machinery; Venusian replaced the internal scanning
machinery, so these are no longer required.

Documentation

	Exception view documentation was added to the Hooks narrative
chapter.

	A new narrative chapter entitled Internationalization and
Localization was added.

	The “Environment Variables and ini File Settings” chapter was
changed: documentation about the default_locale_name setting was
added.

	A new API chapter for the repoze.bfg.i18n module was added.

	Documentation for the new translationdir and
localenegotiator ZCML directives were added.

	A section was added to the Templates chapter entitled “Nicer
Exceptions in Templates” describing the result of setting
debug_templates = true.

Paster Templates

	All paster templates now create a setup.cfg which includes
commands related to nose testing and Babel message catalog
extraction/compilation.

	A default_locale_name = en setting was added to each existing paster
template.

	A debug_templates = true setting was added to each existing
paster template.

Licensing

	The Edgewall (BSD) license was added to the LICENSES.txt file, as
some code in the repoze.bfg.i18n derives from Babel source.

1.2 (2010-02-10)

	No changes from 1.2b6.

1.2b6 (2010-02-06)

Backwards Incompatibilities

	Remove magical feature of repoze.bfg.url.model_url which
prepended a fully-expanded urldispatch route URL before a the
model’s path if it was noticed that the request had matched a route.
This feature was ill-conceived, and didn’t work in all scenarios.

Bug Fixes

	More correct conversion of provided renderer values to resource
specification values (internal).

1.2b5 (2010-02-04)

Bug Fixes

	1.2b4 introduced a bug whereby views added via a route configuration
that named a view callable and also a view_attr became broken.
Symptom: MyViewClass is not callable or the __call__ of a
class was being called instead of the method named via
view_attr.

	Fix a bug whereby a renderer argument to the @bfg_view
decorator that provided a package-relative template filename might
not have been resolved properly. Symptom: inappropriate Missing
template resource errors.

1.2b4 (2010-02-03)

Documentation

	Update GAE tutorial to use Chameleon instead of Jinja2 (now that
it’s possible).

Bug Fixes

	Ensure that secure flag for AuthTktAuthenticationPolicy
constructor does what it’s documented to do (merge Daniel Holth’s
fancy-cookies-2 branch).

Features

	Add path and http_only options to
AuthTktAuthenticationPolicy constructor (merge Daniel Holth’s
fancy-cookies-2 branch).

Backwards Incompatibilities

	Remove view_header, view_accept, view_xhr,
view_path_info, view_request_method, view_request_param,
and view_containment predicate arguments from the
Configurator.add_route argument list. These arguments were
speculative. If you need the features exposed by these arguments,
add a view associated with a route using the route_name argument
to the add_view method instead.

	Remove view_header, view_accept, view_xhr,
view_path_info, view_request_method, view_request_param,
and view_containment predicate arguments from the route ZCML
directive attribute set. These attributes were speculative. If you
need the features exposed by these attributes, add a view associated
with a route using the route_name attribute of the view ZCML
directive instead.

Dependencies

	Remove dependency on sourcecodegen (not depended upon by
Chameleon 1.1.1+).

1.2b3 (2010-01-24)

Bug Fixes

	When “hybrid mode” (both traversal and urldispatch) is in use,
default to finding route-related views even if a non-route-related
view registration has been made with a more specific context. The
default used to be to find views with a more specific context first.
Use the new use_global_views argument to the route definition to
get back the older behavior.

Features

	Add use_global_views argument to add_route method of
Configurator. When this argument is true, views registered for no
route will be found if no more specific view related to the route is
found.

	Add use_global_views attribute to ZCML <route> directive
(see above).

Internal

	When registering a view, register the view adapter with the
“requires” interfaces as (request_type, context_type) rather
than (context_type, request_type). This provides for saner
lookup, because the registration will always be made with a specific
request interface, but registration may not be made with a specific
context interface. In general, when creating multiadapters, you
want to order the requires interfaces so that the the elements which
are more likely to be registered using specific interfaces are
ordered before those which are less likely.

1.2b2 (2010-01-21)

Bug Fixes

	When the Configurator is passed an instance of
zope.component.registry.Components as a registry constructor
argument, fix the instance up to have the attributes we expect of an
instance of repoze.bfg.registry.Registry when setup_registry
is called. This makes it possible to use the global Zope component
registry as a BFG application registry.

	When WebOb 0.9.7.1 was used, a deprecation warning was issued for
the class attribute named charset within
repoze.bfg.request.Request. BFG now requires WebOb >= 0.9.7,
and code was added so that this deprecation warning has disappeared.

	Fix a view lookup ordering bug whereby a view with a larger number
of predicates registered first (literally first, not “earlier”) for
a triad would lose during view lookup to one registered with fewer.

	Make sure views with exactly N custom predicates are always called
before views with exactly N non-custom predicates given all else is
equal in the view configuration.

Documentation

	Change renderings of ZCML directive documentation.

	Add a narrative documentation chapter: “Using the Zope Component
Architecture in repoze.bfg”.

Dependencies

	Require WebOb >= 0.9.7

1.2b1 (2010-01-18)

Bug Fixes

	In bfg_routesalchemy, bfg_alchemy paster templates and the
bfgwiki2 tutorial, clean up the SQLAlchemy connection by
registering a repoze.tm.after_end callback instead of relying on
a __del__ method of a Cleanup class added to the WSGI
environment. The __del__ strategy was fragile and caused
problems in the wild. Thanks to Daniel Holth for testing.

Features

	Read logging configuration from PasteDeploy config file loggers
section (and related) when paster bfgshell is invoked.

Documentation

	Major rework in preparation for book publication.

1.2a11 (2010-01-05)

Bug Fixes

	Make paster bfgshell and paster create -t bfg_xxx work on
Jython (fix minor incompatibility with treatment of __doc__ at
the class level).

	Updated dependency on WebOb to require a version which supports
features now used in tests.

Features

	Jython compatibility (at least when repoze.bfg.jinja2 is used as the
templating engine; Chameleon does not work under Jython).

	Show the derived abspath of template resource specifications in the
traceback when a renderer template cannot be found.

	Show the original traceback when a Chameleon template cannot be
rendered due to a platform incompatibility.

1.2a10 (2010-01-04)

Features

	The Configurator.add_view method now accepts an argument named
context. This is an alias for the older argument named
for_; it is preferred over for_, but for_ will continue
to be supported “forever”.

	The view ZCML directive now accepts an attribute named
context. This is an alias for the older attribute named
for; it is preferred over for, but for will continue to
be supported “forever”.

	The Configurator.add_route method now accepts an argument named
view_context. This is an alias for the older argument named
view_for; it is preferred over view_for, but view_for
will continue to be supported “forever”.

	The route ZCML directive now accepts an attribute named
view_context. This is an alias for the older attribute named
view_for; it is preferred over view_for, but view_for
will continue to be supported “forever”.

Documentation and Paster Templates

	LaTeX rendering tweaks.

	All uses of the Configurator.add_view method that used its
for_ argument now use the context argument instead.

	All uses of the Configurator.add_route method that used its
view_for argument now use the view_context argument instead.

	All uses of the view ZCML directive that used its for
attribute now use the context attribute instead.

	All uses of the route ZCML directive that used its view_for
attribute now use the view_context attribute instead.

	Add a (minimal) tutorial dealing with use of repoze.catalog in a
repoze.bfg application.

Documentation Licensing

	Loosen the documentation licensing to allow derivative works: it is
now offered under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. This is
only a documentation licensing change; the repoze.bfg software
continues to be offered under the Repoze Public License at
http://repoze.org/license.html (BSD-like).

1.2a9 (2009-12-27)

Documentation Licensing

	The documentation (the result of make <html|latex|htmlhelp>
within the docs directory) in this release is now offered under
the Creative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States License as described by
http://creativecommons.org/licenses/by-nc-nd/3.0/us/ . This is only
a licensing change for the documentation; the repoze.bfg
software continues to be offered under the Repoze Public License
at http://repoze.org/license.html (BSD-like).

Documentation

	Added manual index entries to generated index.

	Document the previously existing (but non-API)
repoze.bfg.configuration.Configurator.setup_registry method as
an official API of a Configurator.

	Fix syntax errors in various documentation code blocks.

	Created new top-level documentation section: “ZCML Directives”.
This section contains detailed ZCML directive information, some of
which was removed from various narrative chapters.

	The LaTeX rendering of the documentation has been improved.

	Added a “Fore-Matter” section with author, copyright, and licensing
information.

1.2a8 (2009-12-24)

Features

	Add a **kw arg to the Configurator.add_settings API.

	Add hook_zca and unhook_zca methods to the Configurator
API.

	The repoze.bfg.testing.setUp method now returns a
Configurator instance which can be used to do further
configuration during unit tests.

Bug Fixes

	The json renderer failed to set the response content type to
application/json. It now does, by setting
request.response_content_type unless this attribute is already
set.

	The string renderer failed to set the response content type to
text/plain. It now does, by setting
request.response_content_type unless this attribute is already
set.

Documentation

	General documentation improvements by using better Sphinx roles such
as “class”, “func”, “meth”, and so on. This means that there are
many more hyperlinks pointing to API documentation for API
definitions in all narrative, tutorial, and API documentation
elements.

	Added a description of imperative configuration in various places
which only described ZCML configuration.

	A syntactical refreshing of various tutorials.

	Added the repoze.bfg.authentication,
repoze.bfg.authorization, and repoze.bfg.interfaces modules
to API documentation.

Deprecations

	The repoze.bfg.testing.registerRoutesMapper API (added in an
early 1.2 alpha) was deprecated. Its import now generates a
deprecation warning.

1.2a7 (2009-12-20)

Features

	Add four new testing-related APIs to the
repoze.bfg.configuration.Configurator class:
testing_securitypolicy, testing_models,
testing_add_subscriber, and testing_add_template. These
were added in order to provide more direct access to the
functionality of the repoze.bfg.testing APIs named
registerDummySecurityPolicy, registerModels,
registerEventListener, and registerTemplateRenderer when a
configurator is used. The testing APIs named are nominally
deprecated (although they will likely remain around “forever”, as
they are in heavy use in the wild).

	Add a new API to the repoze.bfg.configuration.Configurator
class: add_settings. This API can be used to add “settings”
(information returned within via the
repoze.bfg.settings.get_settings API) after the configurator has
been initially set up. This is most useful for testing purposes.

	Add a custom_predicates argument to the Configurator
add_view method, the bfg_view decorator and the attribute
list of the ZCML view directive. If custom_predicates is
specified, it must be a sequence of predicate callables (a predicate
callable accepts two arguments: context and request and
returns True or False). The associated view callable will
only be invoked if all custom predicates return True. Use one
or more custom predicates when no existing predefined predicate is
useful. Predefined and custom predicates can be mixed freely.

	Add a custom_predicates argument to the Configurator
add_route and the attribute list of the ZCML route
directive. If custom_predicates is specified, it must be a
sequence of predicate callables (a predicate callable accepts two
arguments: context and request and returns True or
False). The associated route will match will only be invoked if
all custom predicates return True, else route matching
continues. Note that the value context will always be None
when passed to a custom route predicate. Use one or more custom
predicates when no existing predefined predicate is useful.
Predefined and custom predicates can be mixed freely.

Internal

	Remove the repoze.bfg.testing.registerTraverser function. This
function was never an API.

Documenation

	Doc-deprecated most helper functions in the repoze.bfg.testing
module. These helper functions likely won’t be removed any time
soon, nor will they generate a warning any time soon, due to their
heavy use in the wild, but equivalent behavior exists in methods of
a Configurator.

1.2a6 (2009-12-18)

Features

	The Configurator object now has two new methods: begin and
end. The begin method is meant to be called before any
“configuration” begins (e.g. before add_view, et. al are
called). The end method is meant to be called after all
“configuration” is complete.

Previously, before there was imperative configuration at all (1.1
and prior), configuration begin and end was invariably implied by
the process of loading a ZCML file. When a ZCML load happened, the
threadlocal data structure containing the request and registry was
modified before the load, and torn down after the load, making sure
that all framework code that needed get_current_registry for the
duration of the ZCML load was satisfied.

Some API methods called during imperative configuration, (such as
Configurator.add_view when a renderer is involved) end up for
historical reasons calling get_current_registry. However, in
1.2a5 and below, the Configurator supplied no functionality that
allowed people to make sure that get_current_registry returned
the registry implied by the configurator being used. begin now
serves this purpose. Inversely, end pops the thread local
stack, undoing the actions of begin.

We make this boundary explicit to reduce the potential for confusion
when the configurator is used in different circumstances (e.g. in
unit tests and app code vs. just in initial app setup).

Existing code written for 1.2a1-1.2a5 which does not call begin
or end continues to work in the same manner it did before. It
is however suggested that this code be changed to call begin and
end to reduce the potential for confusion in the future.

	All paster templates which generate an application skeleton now
make use of the new begin and end methods of the
Configurator they use in their respective copies of run.py and
tests.py.

Documentation

	All documentation that makes use of a Configurator object to do
application setup and test setup now makes use of the new begin
and end methods of the configurator.

Bug Fixes

	When a repoze.bfg.exceptions.NotFound or
repoze.bfg.exceptions.Forbidden class (as opposed to instance)
was raised as an exception within a root factory (or route root
factory), the exception would not be caught properly by the
repoze.bfg. Router and it would propagate to up the call stack,
as opposed to rendering the not found view or the forbidden view as
would have been expected.

	When Chameleon page or text templates used as renderers were added
imperatively (via Configurator.add_view or some derivative),
they too-eagerly attempted to look up the reload_templates
setting via get_settings, meaning they were always registered in
non-auto-reload-mode (the default). Each now waits until its
respective template attribute is accessed to look up the value.

	When a route with the same name as a previously registered route was
added, the old route was not removed from the mapper’s routelist.
Symptom: the old registered route would be used (and possibly
matched) during route lookup when it should not have had a chance to
ever be used.

1.2a5 (2009-12-10)

Features

	When the repoze.bfg.exceptions.NotFound or
repoze.bfg.exceptions.Forbidden error is raised from within a
custom root factory or the factory of a route, the appropriate
response is now sent to the requesting user agent (the result of the
notfound view or the forbidden view, respectively). When these
errors are raised from within a root factory, the context passed
to the notfound or forbidden view will be None. Also, the
request will not be decorated with view_name, subpath,
context, etc. as would normally be the case if traversal had
been allowed to take place.

Internals

	The exception class representing the error raised by various methods
of a Configurator is now importable as
repoze.bfg.exceptions.ConfigurationError.

Documentation

	General documentation freshening which takes imperative
configuration into account in more places and uses glossary
references more liberally.

	Remove explanation of changing the request type in a new request
event subscriber, as other predicates are now usually an easier way
to get this done.

	Added “Thread Locals” narrative chapter to documentation, and added
a API chapter documenting the repoze.bfg.threadlocals module.

	Added a “Special Exceptions” section to the “Views” narrative
documentation chapter explaining the effect of raising
repoze.bfg.exceptions.NotFound and
repoze.bfg.exceptions.Forbidden from within view code.

Dependencies

	A new dependency on the twill package was added to the
setup.py tests_require argument (Twill will only be
downloaded when repoze.bfg setup.py test or setup.py
nosetests is invoked).

1.2a4 (2009-12-07)

Features

	repoze.bfg.testing.DummyModel now accepts a new constructor
keyword argument: __provides__. If this constructor argument is
provided, it should be an interface or a tuple of interfaces. The
resulting model will then provide these interfaces (they will be
attached to the constructed model via
zope.interface.alsoProvides).

Bug Fixes

	Operation on GAE was broken, presumably because the
repoze.bfg.configuration module began to attempt to import the
repoze.bfg.chameleon_zpt and repoze.bfg.chameleon_text
modules, and these cannot be used on non-CPython platforms. It now
tolerates startup time import failures for these modules, and only
raise an import error when a template from one of these packages is
actually used.

1.2a3 (2009-12-02)

Bug Fixes

	The repoze.bfg.url.route_url function inappropriately passed
along _query and/or _anchor arguments to the
mapper.generate function, resulting in blowups.

	When two views were registered with differering for interfaces
or classes, and the for of first view registered was a
superclass of the second, the repoze.bfg view machinery would
incorrectly associate the two views with the same “multiview”.
Multiviews are meant to be collections of views that have exactly
the same for/request/viewname values, without taking inheritance
into account. Symptom: wrong view callable found even when you had
correctly specified a for_ interface/class during view
configuration for one or both view configurations.

Backwards Incompatibilities

	The repoze.bfg.templating module has been removed; it had been
deprecated in 1.1 and never actually had any APIs in it.

1.2a2 (2009-11-29)

Bug Fixes

	The the long description of this package (as shown on PyPI) was not
valid reStructuredText, and so was not renderable.

	Trying to use an HTTP method name string such as GET as a
request_type predicate argument caused a startup time failure
when it was encountered in imperative configuration or in a
decorator (symptom: Type Error: Required specification must be a
specification). This now works again, although request_method
is now the preferred predicate argument for associating a view
configuration with an HTTP request method.

Documentation

	Fixed “Startup” narrative documentation chapter; it was explaining
“the old way” an application constructor worked.

1.2a1 (2009-11-28)

Features

	An imperative configuration mode.

A repoze.bfg application can now begin its life as a single
Python file. Later, the application might evolve into a set of
Python files in a package. Even later, it might start making use of
other configuration features, such as ZCML. But neither the use
of a package nor the use of non-imperative configuration is required
to create a simple repoze.bfg application any longer.

Imperative configuration makes repoze.bfg competetive with
“microframeworks” such as Bottle [http://bottle.paws.de/] and
Tornado [http://www.tornadoweb.org/]. repoze.bfg has a good
deal of functionality that most microframeworks lack, so this is
hopefully a “best of both worlds” feature.

The simplest possible repoze.bfg application is now:

from webob import Response
from wsgiref import simple_server
from repoze.bfg.configuration import Configurator

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 simple_server.make_server('', 8080, app).serve_forever()

	A new class now exists: repoze.bfg.configuration.Configurator.
This class forms the basis for sharing machinery between
“imperatively” configured applications and traditional
declaratively-configured applications.

	The repoze.bfg.testing.setUp function now accepts three extra
optional keyword arguments: registry, request and
hook_zca.

If the registry argument is not None, the argument will be
treated as the registry that is set as the “current registry” (it
will be returned by repoze.bfg.threadlocal.get_current_registry)
for the duration of the test. If the registry argument is
None (the default), a new registry is created and used for the
duration of the test.

The value of the request argument is used as the “current
request” (it will be returned by
repoze.bfg.threadlocal.get_current_request) for the duration of
the test; it defaults to None.

If hook_zca is True (the default), the
zope.component.getSiteManager function will be hooked with a
function that returns the value of registry (or the
default-created registry if registry is None) instead of the
registry returned by zope.component.getGlobalSiteManager,
causing the Zope Component Architecture API (getSiteManager,
getAdapter, getUtility, and so on) to use the testing
registry instead of the global ZCA registry.

	The repoze.bfg.testing.tearDown function now accepts an
unhook_zca argument. If this argument is True (the
default), zope.component.getSiteManager.reset() will be called.
This will cause the result of the zope.component.getSiteManager
function to be the global ZCA registry (the result of
zope.component.getGlobalSiteManager) once again.

	The run.py module in various repoze.bfg paster templates
now use a repoze.bfg.configuration.Configurator class instead of
the (now-legacy) repoze.bfg.router.make_app function to produce
a WSGI application.

Documentation

	The documentation now uses the “request-only” view calling
convention in most examples (as opposed to the context, request
convention). This is a documentation-only change; the context,
request convention is also supported and documented, and will be
“forever”.

	repoze.bfg.configuration API documentation has been added.

	A narrative documentation chapter entitled “Creating Your First
repoze.bfg Application” has been added. This chapter details
usage of the new repoze.bfg.configuration.Configurator class,
and demonstrates a simplified “imperative-mode” configuration; doing
repoze.bfg application configuration imperatively was previously
much more difficult.

	A narrative documentation chapter entitled “Configuration,
Decorations and Code Scanning” explaining ZCML- vs. imperative-
vs. decorator-based configuration equivalence.

	The “ZCML Hooks” chapter has been renamed to “Hooks”; it documents
how to override hooks now via imperative configuration and ZCML.

	The explanation about how to supply an alternate “response factory”
has been removed from the “Hooks” chapter. This feature may be
removed in a later release (it still works now, it’s just not
documented).

	Add a section entitled “Test Set Up and Tear Down” to the
unittesting chapter.

Bug Fixes

	The ACL authorization policy debugging output when
debug_authorization console debugging output was turned on
wasn’t as clear as it could have been when a view execution was
denied due to an authorization failure resulting from the set of
principals passed never having matched any ACE in any ACL in the
lineage. Now in this case, we report <default deny> as the ACE
value and either the root ACL or <No ACL found on any object in
model lineage> if no ACL was found.

	When two views were registered with the same accept argument,
but were otherwise registered with the same arguments, if a request
entered the application which had an Accept header that accepted
either of the media types defined by the set of views registered
with predicates that otherwise matched, a more or less “random” one
view would “win”. Now, we try harder to use the view callable
associated with the view configuration that has the most specific
accept argument. Thanks to Alberto Valverde for an initial
patch.

Internals

	The routes mapper is no longer a root factory wrapper. It is now
consulted directly by the router.

	The repoze.bfg.registry.make_registry callable has been removed.

	The repoze.bfg.view.map_view callable has been removed.

	The repoze.bfg.view.owrap_view callable has been removed.

	The repoze.bfg.view.predicate_wrap callable has been removed.

	The repoze.bfg.view.secure_view callable has been removed.

	The repoze.bfg.view.authdebug_view callable has been removed.

	The repoze.bfg.view.renderer_from_name callable has been
removed. Use repoze.bfg.configuration.Configurator.renderer_from_name
instead (still not an API, however).

	The repoze.bfg.view.derive_view callable has been removed. Use
repoze.bfg.configuration.Configurator.derive_view instead (still
not an API, however).

	The repoze.bfg.settings.get_options callable has been removed.
Its job has been subsumed by the repoze.bfg.settings.Settings
class constructor.

	The repoze.bfg.view.requestonly function has been moved to
repoze.bfg.configuration.requestonly.

	The repoze.bfg.view.rendered_response function has been moved to
repoze.bfg.configuration.rendered_response.

	The repoze.bfg.view.decorate_view function has been moved to
repoze.bfg.configuration.decorate_view.

	The repoze.bfg.view.MultiView class has been moved to
repoze.bfg.configuration.MultiView.

	The repoze.bfg.zcml.Uncacheable class has been removed.

	The repoze.bfg.resource.resource_spec function has been removed.

	All ZCML directives which deal with attributes which are paths now
use the path method of the ZCML context to resolve a relative
name to an absolute one (imperative configuration requirement).

	The repoze.bfg.scripting.get_root API now uses a ‘real’ WebOb
request rather than a FakeRequest when it sets up the request as a
threadlocal.

	The repoze.bfg.traversal.traverse API now uses a ‘real’ WebOb
request rather than a FakeRequest when it calls the traverser.

	The repoze.bfg.request.FakeRequest class has been removed.

	Most uses of the ZCA threadlocal API (the getSiteManager,
getUtility, getAdapter, getMultiAdapter threadlocal API)
have been removed from the core. Instead, when a threadlocal is
necessary, the core uses the
repoze.bfg.threadlocal.get_current_registry API to obtain the
registry.

	The internal ILogger utility named repoze.bfg.debug is now just
an IDebugLogger unnamed utility. A named utility with the old name
is registered for b/w compat.

	The repoze.bfg.interfaces.ITemplateRendererFactory interface was
removed; it has become unused.

	Instead of depending on the martian package to do code scanning,
we now just use our own scanning routines.

	We now no longer have a dependency on repoze.zcml package;
instead, the repoze.bfg package includes implementations of the
adapter, subscriber and utility directives.

	Relating to the following functions:

repoze.bfg.view.render_view

repoze.bfg.view.render_view_to_iterable

repoze.bfg.view.render_view_to_response

repoze.bfg.view.append_slash_notfound_view

repoze.bfg.view.default_notfound_view

repoze.bfg.view.default_forbidden_view

repoze.bfg.configuration.rendered_response

repoze.bfg.security.has_permission

repoze.bfg.security.authenticated_userid

repoze.bfg.security.effective_principals

repoze.bfg.security.view_execution_permitted

repoze.bfg.security.remember

repoze.bfg.security.forget

repoze.bfg.url.route_url

repoze.bfg.url.model_url

repoze.bfg.url.static_url

repoze.bfg.traversal.virtual_root

Each of these functions now expects to be called with a request
object that has a registry attribute which represents the
current repoze.bfg registry. They fall back to obtaining the
registry from the threadlocal API.

Backwards Incompatibilites

	Unit tests which use zope.testing.cleanup.cleanUp for the
purpose of isolating tests from one another may now begin to fail
due to lack of isolation between tests.

Here’s why: In repoze.bfg 1.1 and prior, the registry returned by
repoze.bfg.threadlocal.get_current_registry when no other
registry had been pushed on to the threadlocal stack was the
zope.component.globalregistry.base global registry (aka the
result of zope.component.getGlobalSiteManager()). In repoze.bfg
1.2+, however, the registry returned in this situation is the new
module-scope repoze.bfg.registry.global_registry object. The
zope.testing.cleanup.cleanUp function clears the
zope.component.globalregistry.base global registry
unconditionally. However, it does not know about the
repoze.bfg.registry.global_registry object, so it does not clear
it.

If you use the zope.testing.cleanup.cleanUp function in the
setUp of test cases in your unit test suite instead of using the
(more correct as of 1.1) repoze.bfg.testing.setUp, you will need
to replace all calls to zope.testing.cleanup.cleanUp with a call
to repoze.bfg.testing.setUp.

If replacing all calls to zope.testing.cleanup.cleanUp with a
call to repoze.bfg.testing.setUp is infeasible, you can put this
bit of code somewhere that is executed exactly once (not for
each test in a test suite; in the `` __init__.py`` of your package
or your package’s tests subpackage would be a reasonable
place):

import zope.testing.cleanup
from repoze.bfg.testing import setUp
zope.testing.cleanup.addCleanUp(setUp)

	When there is no “current registry” in the
repoze.bfg.threadlocal.manager threadlocal data structure (this
is the case when there is no “current request” or we’re not in the
midst of a r.b.testing.setUp-bounded unit test), the .get
method of the manager returns a data structure containing a global
registry. In previous releases, this function returned the global
Zope “base” registry: the result of
zope.component.getGlobalSiteManager, which is an instance of the
zope.component.registry.Component class. In this release,
however, the global registry returns a globally importable instance
of the repoze.bfg.registry.Registry class. This registry
instance can always be imported as
repoze.bfg.registry.global_registry.

Effectively, this means that when you call
repoze.bfg.threadlocal.get_current_registry when no request or
setUp bounded unit test is in effect, you will always get back
the global registry that lives in
repoze.bfg.registry.global_registry. It also means that
repoze.bfg APIs that call get_current_registry will use
this registry.

This change was made because repoze.bfg now expects the registry
it uses to have a slightly different API than a bare instance of
zope.component.registry.Components.

	View registration no longer registers a
repoze.bfg.interfaces.IViewPermission adapter (it is no longer
checked by the framework; since 1.1, views have been responsible for
providing their own security).

	The repoze.bfg.router.make_app callable no longer accepts the
authentication_policy nor the authorization_policy
arguments. This feature was deprecated in version 1.0 and has been
removed.

	Obscure: the machinery which configured views with a
request_type and a route_name would ignore the request
interface implied by route_name registering a view only for the
interface implied by request_type. In the unlikely event that
you were trying to use these two features together, the symptom
would have been that views that named a request_type but which
were also associated with routes were not found when the route
matched. Now if a view is configured with both a request_type
and a route_name, an error is raised.

	The route ZCML directive now no longer accepts the
request_type or view_request_type attributes. These
attributes didn’t actually work in any useful way (see entry above
this one).

	Because the repoze.bfg package now includes implementations of
the adapter, subscriber and utility ZCML directives, it
is now an error to have <include package="repoze.zcml"
file="meta.zcml"/> in the ZCML of a repoze.bfg application. A
ZCML conflict error will be raised if your ZCML does so. This
shouldn’t be an issue for “normal” installations; it has always been
the responsibility of the repoze.bfg.includes ZCML to include
this file in the past; it now just doesn’t.

	The repoze.bfg.testing.zcml_configure API was removed. Use
the Configurator.load_zcml API instead.

Deprecations

	The repoze.bfg.router.make_app function is now nominally
deprecated. Its import and usage does not throw a warning, nor will
it probably ever disappear. However, using a
repoze.bfg.configuration.Configurator class is now the preferred
way to generate a WSGI application.

Note that make_app calls
zope.component.getSiteManager.sethook(
repoze.bfg.threadlocal.get_current_registry) on the caller’s
behalf, hooking ZCA global API lookups, for backwards compatibility
purposes. If you disuse make_app, your calling code will need
to perform this call itself, at least if your application uses the
ZCA global API (getSiteManager, getAdapter, etc).

Dependencies

	A dependency on the martian package has been removed (its
functionality is replaced internally).

	A dependency on the repoze.zcml package has been removed (its
functionality is replaced internally).

1.1.1 (2009-11-21)

Bug Fixes

	“Hybrid mode” applications (applications which explicitly used
traversal after url dispatch via <route> paths containing the
*traverse element) were broken in 1.1-final and all 1.1 alpha
and beta releases. Views registered without a route_name route
shadowed views registered with a route_name inappropriately.

1.1 (2009-11-15)

Internals

	Remove dead IRouteRequirement interface from repoze.bfg.zcml
module.

Documentation

	Improve the “Extending an Existing Application” narrative chapter.

	Add more sections to the “Defending Design” chapter.

1.1b4 (2009-11-12)

Bug Fixes

	Use alsoProvides in the urldispatch module to attach an
interface to the request rather than directlyProvides to avoid
disturbing interfaces set in a NewRequest event handler.

Documentation

	Move 1.0.1 and previous changelog to HISTORY.txt.

	Add examples to repoze.bfg.url.model_url docstring.

	Add “Defending BFG Design” chapter to frontpage docs.

Templates

	Remove ez_setup.py and its import from all paster templates,
samples, and tutorials for distribute compatibility. The
documentation already explains how to install virtualenv (which will
include some setuptools package), so these files, imports and
usages were superfluous.

Deprecations

	The options kw arg to the repoze.bfg.router.make_app
function is deprecated. In its place is the keyword argument
settings. The options keyword continues to work, and a
deprecation warning is not emitted when it is detected. However,
the paster templates, code samples, and documentation now make
reference to settings rather than options. This
change/deprecation was mainly made for purposes of clarity and
symmetry with the get_settings() API and dicussions of
“settings” in various places in the docs: we want to use the same
name to refer to the same thing everywhere.

1.1b3 (2009-11-06)

Features

	repoze.bfg.testing.registerRoutesMapper testing facility added.
This testing function registers a routes “mapper” object in the
registry, for tests which require its presence. This function is
documented in the repoze.bfg.testing API documentation.

Bug Fixes

	Compound statements that used an assignment entered into in an
interactive IPython session invoked via paster bfgshell no
longer fail to mutate the shell namespace correctly. For example,
this set of statements used to fail:

In [2]: def bar(x): return x
 ...:
In [3]: list(bar(x) for x in 'abc')
Out[3]: NameError: 'bar'

In this release, the bar function is found and the correct
output is now sent to the console. Thanks to Daniel Holth for the
patch.

	The bfgshell command did not function properly; it was still
expecting to be able to call the root factory with a bare
environ rather than a request object.

Backwards Incompatibilities

	The repoze.bfg.scripting.get_root function now expects a
request object as its second argument rather than an
environ.

1.1b2 (2009-11-02)

Bug Fixes

	Prevent PyPI installation failure due to easy_install trying way
too hard to guess the best version of Paste. When easy_install
pulls from PyPI it reads links off various pages to determine “more
up to date” versions. It incorrectly picks up a link for an ancient
version of a package named “Paste-Deploy-0.1” (note the dash) when
trying to find the “Paste” distribution and somehow believes it’s
the latest version of “Paste”. It also somehow “helpfully” decides
to check out a version of this package from SVN. We pin the Paste
dependency version to a version greater than 1.7 to work around
this easy_install bug.

Documentation

	Fix “Hybrid” narrative chapter: stop claiming that <view>
statements that mention a route_name need to come afer (in XML
order) the <route> statement which creates the route. This
hasn’t been true since 1.1a1.

	“What’s New in repoze.bfg 1.1” document added to narrative
documentation.

Features

	Add a new event type: repoze.bfg.events.AfterTraversal. Events
of this type will be sent after traversal is completed, but before
any view code is invoked. Like repoze.bfg.events.NewRequest,
This event will have a single attribute: request representing
the current request. Unlike the request attribute of
repoze.bfg.events.NewRequest however, during an AfterTraversal
event, the request object will possess attributes set by the
traverser, most notably context, which will be the context used
when a view is found and invoked. The interface
repoze.bfg.events.IAfterTraversal can be used to subscribe to
the event. For example:

<subscriber for="repoze.bfg.interfaces.IAfterTraversal"
 handler="my.app.handle_after_traverse"/>

Like any framework event, a subscriber function should expect one
parameter: event.

Dependencies

	Rather than depending on chameleon.core and chameleon.zpt
distributions individually, depend on Malthe’s repackaged
Chameleon distribution (which includes both chameleon.core
and chameleon.zpt).

1.1b1 (2009-11-01)

Bug Fixes

	The routes root factory called route factories and the default route
factory with an environ rather than a request. One of the symptoms
of this bug: applications generated using the bfg_zodb paster
template in 1.1a9 did not work properly.

	Reinstate renderer alias for view_renderer in the
<route> ZCML directive (in-the-wild 1.1a bw compat).

	bfg_routesalchemy paster template: change <route>
declarations: rename renderer attribute to view_renderer.

	Header values returned by the authtktauthenticationpolicy
remember and forget methods would be of type unicode.
This violated the WSGI spec, causing a TypeError to be raised
when these headers were used under mod_wsgi.

	If a BFG app that had a route matching the root URL was mounted
under a path in modwsgi, ala WSGIScriptAlias /myapp
/Users/chrism/projects/modwsgi/env/bfg.wsgi, the home route (a
route with the path of '/' or '') would not match when the
path /myapp was visited (only when the path /myapp/ was
visited). This is now fixed: if the urldispatch root factory notes
that the PATH_INFO is empty, it converts it to a single slash before
trying to do matching.

Documentation

	In <route> declarations in tutorial ZCML, rename renderer
attribute to view_renderer (fwd compat).

	Fix various tutorials broken by 1.1a9 <route> directive changes.

Internal

	Deal with a potential circref in the traversal module.

1.1a9 (2009-10-31)

Bug Fixes

	An incorrect ZCML conflict would be encountered when the
request_param predicate attribute was used on the ZCML view
directive if any two otherwise same-predicated views had the
combination of a predicate value with an = sign and one without
(e.g. a vs. a=123).

Features

	In previous versions of BFG, the “root factory” (the get_root
callable passed to make_app or a function pointed to by the
factory attribute of a route) was called with a “bare” WSGI
environment. In this version, and going forward, it will be called
with a request object. The request object passed to the factory
implements dictionary-like methods in such a way that existing root
factory code which expects to be passed an environ will continue to
work.

	The __call__ of a plugin “traverser” implementation (registered
as an adapter for ITraverser or ITraverserFactory) will now
receive a request as the single argument to its __call__
method. In previous versions it was passed a WSGI environ
object. The request object passed to the factory implements
dictionary-like methods in such a way that existing traverser code
which expects to be passed an environ will continue to work.

	The ZCML route directive’s attributes xhr,
request_method, path_info, request_param, header and
accept are now route predicates rather than view predicates.
If one or more of these predicates is specified in the route
configuration, all of the predicates must return true for the route
to match a request. If one or more of the route predicates
associated with a route returns False when checked during a
request, the route match fails, and the next match in the routelist
is tried. This differs from the previous behavior, where no route
predicates existed and all predicates were considered view
predicates, because in that scenario, the next route was not tried.

Documentation

	Various changes were made to narrative and API documentation
supporting the change from passing a request rather than an environ
to root factories and traversers.

Internal

	The request implements dictionary-like methods that mutate and query
the WSGI environ. This is only for the purpose of backwards
compatibility with root factories which expect an environ rather
than a request.

	The repoze.bfg.request.create_route_request_factory function,
which returned a request factory was removed in favor of a
repoze.bfg.request.route_request_interface function, which
returns an interface.

	The repoze.bfg.request.Request class, which is a subclass of
webob.Request now defines its own __setattr__,
__getattr__ and __delattr__ methods, which override the
default WebOb behavior. The default WebOb behavior stores
attributes of the request in self.environ['webob.adhoc_attrs'],
and retrieves them from that dictionary during a __getattr__.
This behavior was undesirable for speed and “expectation” reasons.
Now attributes of the request are stored in request.__dict__
(as you otherwise might expect from an object that did not override
these methods).

	The router no longer calls repoze.bfg.traversal._traverse and
does its work “inline” (speed).

	Reverse the order in which the router calls the request factory and
the root factory. The request factory is now called first; the
resulting request is passed to the root factory.

	The repoze.bfg.request.request_factory function has been
removed. Its functionality is no longer required.

	The “routes root factory” that wraps the default root factory when
there are routes mentioned in the configuration now attaches an
interface to the request via zope.interface.directlyProvides.
This replaces logic in the (now-gone)
repoze.bfg.request.request_factory function.

	The route and view ZCML directives now register an interface
as a named utility (retrieved from
repoze.bfg.request.route_request_interface) rather than a
request factory (the previous return value of the now-missing
repoze.bfg.request.create_route_request_factory.

	The repoze.bfg.functional module was renamed to
repoze.bfg.compat.

Backwards Incompatibilities

	Explicitly revert the feature introduced in 1.1a8: where the name
root is available as an attribute of the request before a
NewRequest event is emitted. This makes some potential future
features impossible, or at least awkward (such as grouping traversal
and view lookup into a single adapter lookup).

	The containment, attr and renderer attributes of the
route ZCML directive were removed.

1.1a8 (2009-10-27)

Features

	Add path_info view configuration predicate.

	paster bfgshell now supports IPython if it’s available for
import. Thanks to Daniel Holth for the initial patch.

	Add repoze.bfg.testing.registerSettings API, which is documented
in the “repoze.bfg.testing” API chapter. This allows for
registration of “settings” values obtained via
repoze.bfg.settings.get_settings() for use in unit tests.

	The name root is available as an attribute of the request
slightly earlier now (before a NewRequest event is emitted).
root is the result of the application “root factory”.

	Added max_age parameter to authtktauthenticationpolicy ZCML
directive. If this value is set, it must be an integer representing
the number of seconds which the auth tkt cookie will survive.
Mainly, its existence allows the auth_tkt cookie to survive across
browser sessions.

Bug Fixes

	Fix bug encountered during “scan” (when <scan ..> directive is
used in ZCML) introduced in 1.1a7. Symptom: AttributeError:
object has no attribute __provides__ raised at startup time.

	The reissue_time argument to the authtktauthenticationpolicy
ZCML directive now actually works. When it is set to an integer
value, an authticket set-cookie header is appended to the response
whenever a request requires authentication and ‘now’ minus the
authticket’s timestamp is greater than reissue_time seconds.

Documentation

	Add a chapter titled “Request and Response” to the narrative
documentation, content cribbed from the WebOb documentation.

	Call out predicate attributes of ZCML directive within “Views”
chapter.

	Fix route_url documentation (_query argument documented as
query and _anchor argument documented as anchor).

Backwards Incompatibilities

	The authtkt authentication policy remember method now no
longer honors token or userdata keyword arguments.

Internal

	Change how bfg_view decorator works when used as a class method
decorator. In 1.1a7, the``scan``directive actually tried to grope
every class in scanned package at startup time, calling dir
against each found class, and subsequently invoking getattr
against each thing found by dir to see if it was a method. This
led to some strange symptoms (e.g. AttributeError: object has no
attribute __provides__), and was generally just a bad idea. Now,
instead of groping classes for methods at startup time, we just
cause the bfg_view decorator itself to populate the method’s
class’ __dict__ when it is used as a method decorator. This
also requires a nasty _getframe thing but it’s slightly less nasty
than the startup time groping behavior. This is essentially a
reversion back to 1.1a6 “grokking” behavior plus some special magic
for using the bfg_view decorator as method decorator inside the
bfg_view class itself.

	The router now checks for a global_response_headers attribute of
the request object before returning a response. If this value
exists, it is presumed to be a sequence of two-tuples, representing
a set of headers to append to the ‘normal’ response headers. This
feature is internal, rather than exposed externally, because it’s
unclear whether it will stay around in the long term. It was added
to support the reissue_time feature of the authtkt
authentication policy.

	The interface ITraverserFactory is now just an alias for ITraverser.

1.1a7 (2009-10-18)

Features

	More than one @bfg_view decorator may now be stacked on top of
any number of others. Each invocation of the decorator registers a
single view configuration. For instance, the following combination
of decorators and a function will register two view configurations
for the same view callable:

from repoze.bfg.view import bfg_view

@bfg_view(name='edit')
@bfg_view(name='change')
def edit(context, request):
 pass

This makes it possible to associate more than one view configuration
with a single callable without requiring any ZCML.

	The @bfg_view decorator can now be used against a class method:

from webob import Response
from repoze.bfg.view import bfg_view

class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 @bfg_view(name='hello')
 def amethod(self):
 return Response('hello from %s!' % self.context)

When the bfg_view decorator is used against a class method, a view
is registered for the class (it’s a “class view” where the “attr”
happens to be the name of the method it is attached to), so the
class it’s defined within must have a suitable constructor: one that
accepts context, request or just request.

Documentation

	Added Changing the Traverser and Changing How
:mod:`repoze.bfg.url.model_url` Generates a URL to the “Hooks”
narrative chapter of the docs.

Internal

	Remove ez_setup.py and imports of it within setup.py. In
the new world, and as per virtualenv setup instructions, people will
already have either setuptools or distribute.

1.1a6 (2009-10-15)

Features

	Add xhr, accept, and header view configuration
predicates to ZCML view declaration, ZCML route declaration, and
bfg_view decorator. See the Views narrative documentation
chapter for more information about these predicates.

	Add setUp and tearDown functions to the
repoze.bfg.testing module. Using setUp in a test setup and
tearDown in a test teardown is now the recommended way to do
component registry setup and teardown. Previously, it was
recommended that a single function named
repoze.bfg.testing.cleanUp be called in both the test setup and
tear down. repoze.bfg.testing.cleanUp still exists (and will
exist “forever” due to its widespread use); it is now just an alias
for repoze.bfg.testing.setUp and is nominally deprecated.

	The BFG component registry is now available in view and event
subscriber code as an attribute of the request
ie. request.registry. This fact is currently undocumented
except for this note, because BFG developers never need to interact
with the registry directly anywhere else.

	The BFG component registry now inherits from dict, meaning that
it can optionally be used as a simple dictionary. Component
registrations performed against it via e.g. registerUtility,
registerAdapter, and similar API methods are kept in a
completely separate namespace than its dict members, so using the
its component API methods won’t effect the keys and values in the
dictionary namespace. Likewise, though the component registry
“happens to be” a dictionary, use of mutating dictionary methods
such as __setitem__ will have no influence on any component
registrations made against it. In other words, the registry object
you obtain via e.g. repoze.bfg.threadlocal.get_current_registry
or request.registry happens to be both a component registry and
a dictionary, but using its component-registry API won’t impact data
added to it via its dictionary API and vice versa. This is a
forward compatibility move based on the goals of “marco”.

	Expose and document repoze.bfg.testing.zcml_configure API. This
function populates a component registry from a ZCML file for testing
purposes. It is documented in the “Unit and Integration Testing”
chapter.

Documentation

	Virtual hosting narrative docs chapter updated with info about
mod_wsgi.

	Point all index URLs at the literal 1.1 index (this alpha cycle may
go on a while).

	Various tutorial test modules updated to use
repoze.bfg.testing.setUp and repoze.bfg.testing.tearDown
methods in order to encourage this as best practice going forward.

	Added “Creating Integration Tests” section to unit testing narrative
documentation chapter. As a result, the name of the unittesting
chapter is now “Unit and Integration Testing”.

Backwards Incompatibilities

	Importing getSiteManager and get_registry from
repoze.bfg.registry is no longer supported. These imports were
deprecated in repoze.bfg 1.0. Import of getSiteManager should
be done as from zope.component import getSiteManager. Import of
get_registry should be done as from repoze.bfg.threadlocal
import get_current_registry. This was done to prevent a circular
import dependency.

	Code bases which alternately invoke both
zope.testing.cleanup.cleanUp and repoze.bfg.testing.cleanUp
(treating them equivalently, using them interchangeably) in the
setUp/tearDown of unit tests will begin to experience test failures
due to lack of test isolation. The “right” mechanism is
repoze.bfg.testing.cleanUp (or the combination of
repoze.bfg.testing.setUp and
repoze.bfg.testing.tearDown). but a good number of legacy
codebases will use zope.testing.cleanup.cleanUp instead. We
support zope.testing.cleanup.cleanUp but not in combination with
repoze.bfg.testing.cleanUp in the same codebase. You should use
one or the other test cleanup function in a single codebase, but not
both.

Internal

	Created new repoze.bfg.configuration module which assumes
responsibilities previously held by the repoze.bfg.registry and
repoze.bfg.router modules (avoid a circular import dependency).

	The result of the zope.component.getSiteManager function in unit
tests set up with repoze.bfg.testing.cleanUp or
repoze.bfg.testing.setUp will be an instance of
repoze.bfg.registry.Registry instead of the global
zope.component.globalregistry.base registry. This also means
that the threadlocal ZCA API functions such as getAdapter and
getUtility as well as internal BFG machinery (such as
model_url and route_url) will consult this registry within
unit tests. This is a forward compatibility move based on the goals
of “marco”.

	Removed repoze.bfg.testing.addCleanUp function and associated
module-scope globals. This was never an API.

1.1a5 (2009-10-10)

Documentation

	Change “Traversal + ZODB” and “URL Dispatch + SQLAlchemy” Wiki
tutorials to make use of the new-to-1.1 “renderer” feature (return
dictionaries from all views).

	Add tests to the “URL Dispatch + SQLAlchemy” tutorial after the
“view” step.

	Added a diagram of model graph traversal to the “Traversal”
narrative chapter of the documentation.

	An exceptions API chapter was added, documenting the new
repoze.bfg.exceptions module.

	Describe “request-only” view calling conventions inside the
urldispatch narrative chapter, where it’s most helpful.

	Add a diagram which explains the operation of the BFG router to the
“Router” narrative chapter.

Features

	Add a new repoze.bfg.testing API: registerRoute, for
registering routes to satisfy calls to
e.g. repoze.bfg.url.route_url in unit tests.

	The notfound and forbidden ZCML directives now accept the
following addtional attributes: attr, renderer, and
wrapper. These have the same meaning as they do in the context
of a ZCML view directive.

	For behavior like Django’s APPEND_SLASH=True, use the
repoze.bfg.view.append_slash_notfound_view view as the Not Found
view in your application. When this view is the Not Found view
(indicating that no view was found), and any routes have been
defined in the configuration of your application, if the value of
PATH_INFO does not already end in a slash, and if the value of
PATH_INFO plus a slash matches any route’s path, do an HTTP
redirect to the slash-appended PATH_INFO. Note that this will
lose POST data information (turning it into a GET), so you
shouldn’t rely on this to redirect POST requests.

	Speed up repoze.bfg.location.lineage slightly.

	Speed up repoze.bfg.encode.urlencode (nee’
repoze.bfg.url.urlencode) slightly.

	Speed up repoze.bfg.traversal.model_path.

	Speed up repoze.bfg.traversal.model_path_tuple slightly.

	Speed up repoze.bfg.traversal.traverse slightly.

	Speed up repoze.bfg.url.model_url slightly.

	Speed up repoze.bfg.url.route_url slightly.

	Sped up repoze.bfg.traversal.ModelGraphTraverser:__call__
slightly.

	Minor speedup of repoze.bfg.router.Router.__call__.

	New repoze.bfg.exceptions module was created to house exceptions
that were previously sprinkled through various modules.

Internal

	Move repoze.bfg.traversal._url_quote into repoze.bfg.encode
as url_quote.

Deprecations

	The import of repoze.bfg.view.NotFound is deprecated in favor of
repoze.bfg.exceptions.NotFound. The old location still
functions, but emits a deprecation warning.

	The import of repoze.bfg.security.Unauthorized is deprecated in
favor of repoze.bfg.exceptions.Forbidden. The old location
still functions but emits a deprecation warning. The rename from
Unauthorized to Forbidden brings parity to the the name of
the exception and the system view it invokes when raised.

Backwards Incompatibilities

	We previously had a Unicode-aware wrapper for the
urllib.urlencode function named repoze.bfg.url.urlencode
which delegated to the stdlib function, but which marshalled all
unicode values to utf-8 strings before calling the stdlib version.
A newer replacement now lives in repoze.bfg.encode The
replacement does not delegate to the stdlib.

The replacement diverges from the stdlib implementation and the
previous repoze.bfg.url url implementation inasmuch as its
doseq argument is now a decoy: it always behaves in the
doseq=True way (which is the only sane behavior) for speed
purposes.

The old import location (repoze.bfg.url.urlencode) still
functions and has not been deprecated.

	In 0.8a7, the return value expected from an object implementing
ITraverserFactory was changed from a sequence of values to a
dictionary containing the keys context, view_name,
subpath, traversed, virtual_root, virtual_root_path,
and root. Until now, old-style traversers which returned a
sequence have continued to work but have generated a deprecation
warning. In this release, traversers which return a sequence
instead of a dictionary will no longer work.

1.1a4 (2009-09-23)

Bug Fixes

	On 64-bit Linux systems, views that were members of a multiview
(orderings of views with predicates) were not evaluated in the
proper order. Symptom: in a configuration that had two views with
the same name but one with a request_method=POST predicate and
one without, the one without the predicate would be called
unconditionally (even if the request was a POST request). Thanks
much to Sebastien Douche for providing the buildbots that pointed
this out.

Documentation

	Added a tutorial which explains how to use repoze.session
(ZODB-based sessions) in a ZODB-based repoze.bfg app.

	Added a tutorial which explains how to add ZEO to a ZODB-based
repoze.bfg application.

	Added a tutorial which explains how to run a repoze.bfg
application under mod_wsgi [http://code.google.com/p/modwsgi/].
See “Running a repoze.bfg Application under mod_wsgi” in the
tutorials section of the documentation.

Features

	Add a repoze.bfg.url.static_url API which is capable of
generating URLs to static resources defined by the <static> ZCML
directive. See the “Views” narrative chapter’s section titled
“Generating Static Resource URLs” for more information.

	Add a string renderer. This renderer converts a non-Response
return value of any view callble into a string. It is documented in
the “Views” narrative chapter.

	Give the route ZCML directive the view_attr and
view_renderer parameters (bring up to speed with 1.1a3
features). These can also be spelled as attr and renderer.

Backwards Incompatibilities

	An object implementing the IRenderer interface (and
ITemplateRenderer`, which is a subclass of ``IRenderer) must now
accept an extra system argument in its __call__ method
implementation. Values computed by the system (as opposed to by the
view) are passed by the system in the system parameter, which
will always be a dictionary. Keys in the dictionary include:
view (the view object that returned the value),
renderer_name (the template name or simple name of the
renderer), context (the context object passed to the view), and
request (the request object passed to the view). Previously
only ITemplateRenderers received system arguments as elements inside
the main value dictionary.

Internal

	The way bfg_view declarations are scanned for has been modified.
This should have no external effects.

	Speed: do not register an ITraverserFactory in configure.zcml;
instead rely on queryAdapter and a manual default to
ModelGraphTraverser.

	Speed: do not register an IContextURL in configure.zcml; instead
rely on queryAdapter and a manual default to TraversalContextURL.

	General speed microimprovements for helloworld benchmark: replace
try/excepts with statements which use ‘in’ keyword.

1.1a3 (2009-09-16)

Documentation

	The “Views” narrative chapter in the documentation has been updated
extensively to discuss “renderers”.

Features

	A renderer attribute has been added to view configurations,
replacing the previous (1.1a2) version’s template attribute. A
“renderer” is an object which accepts the return value of a view and
converts it to a string. This includes, but is not limited to,
templating systems.

	A new interface named IRenderer was added. The existing
interface, ITemplateRenderer now derives from this new
interface. This interface is internal.

	A new interface named IRendererFactory was added. An existing
interface named ITemplateRendererFactory now derives from this
interface. This interface is internal.

	The view attribute of the view ZCML directive is no longer
required if the ZCML directive also has a renderer attribute.
This is useful when the renderer is a template renderer and no names
need be passed to the template at render time.

	A new zcml directive renderer has been added. It is documented
in the “Views” narrative chapter of the documentation.

	A ZCML view directive (and the associated bfg_view
decorator) can now accept a “wrapper” value. If a “wrapper” value
is supplied, it is the value of a separate view’s name attribute.
When a view with a wrapper attribute is rendered, the “inner”
view is first rendered normally. Its body is then attached to the
request as “wrapped_body”, and then a wrapper view name is looked up
and rendered (using repoze.bfg.render_view_to_response), passed
the request and the context. The wrapper view is assumed to do
something sensible with request.wrapped_body, usually inserting
its structure into some other rendered template. This feature makes
it possible to specify (potentially nested) “owrap” relationships
between views using only ZCML or decorators (as opposed always using
ZPT METAL and analogues to wrap view renderings in outer wrappers).

Dependencies

	When used under Python < 2.6, BFG now has an installation time
dependency on the simplejson package.

Deprecations

	The repoze.bfg.testing.registerDummyRenderer API has been
deprecated in favor of
repoze.bfg.testing.registerTemplateRenderer. A deprecation
warning is not issued at import time for the former name; it will
exist “forever”; its existence has been removed from the
documentation, however.

	The repoze.bfg.templating.renderer_from_cache function has been
moved to repoze.bfg.renderer.template_renderer_factory. This
was never an API, but code in the wild was spotted that used it. A
deprecation warning is issued at import time for the former.

Backwards Incompatibilities

	The ITemplateRenderer interface has been changed. Previously
its __call__ method accepted **kw. It now accepts a single
positional parameter named kw (REVISED: it accepts two
positional parameters as of 1.1a4: value and system). This
is mostly an internal change, but it was exposed in APIs in one
place: if you’ve used the
repoze.bfg.testing.registerDummyRenderer API in your tests with
a custom “renderer” argument with your own renderer implementation,
you will need to change that renderer implementation to accept
kw instead of **kw in its __call__ method (REVISED: make
it accept value and system positional arguments as of 1.1a4).

	The ITemplateRendererFactory interface has been changed.
Previously its __call__ method accepted an auto_reload
keyword parameter. Now its __call__ method accepts no keyword
parameters. Renderers are now themselves responsible for
determining details of auto-reload. This is purely an internal
change. This interface was never external.

	The template_renderer ZCML directive introduced in 1.1a2 has
been removed. It has been replaced by the renderer directive.

	The previous release (1.1a2) added a view configuration attribute
named template. In this release, the attribute has been renamed
to renderer. This signifies that the attribute is more generic:
it can now be not just a template name but any renderer name (ala
json).

	In the previous release (1.1a2), the Chameleon text template
renderer was used if the system didn’t associate the template
view configuration value with a filename with a “known” extension.
In this release, you must use a renderer attribute which is a
path that ends with a .txt extension
(e.g. templates/foo.txt) to use the Chameleon text renderer.

1.1a2 (2009-09-14)

Features

	A ZCML view directive (and the associated bfg_view
decorator) can now accept an “attr” value. If an “attr” value is
supplied, it is considered a method named of the view object to be
called when the response is required. This is typically only good
for views that are classes or instances (not so useful for
functions, as functions typically have no methods other than
__call__).

	A ZCML view directive (and the associated bfg_view
decorator) can now accept a “template” value. If a “template” value
is supplied, and the view callable returns a dictionary, the
associated template is rendered with the dictionary as keyword
arguments. See the section named “Views That Have a template”
in the “Views” narrative documentation chapter for more information.

1.1a1 (2009-09-06)

Bug Fixes

	“tests” module removed from the bfg_alchemy paster template; these
tests didn’t work.

	Bugfix: the discriminator for the ZCML “route” directive was
incorrect. It was possible to register two routes that collided
without the system spitting out a ConfigurationConflictError at
startup time.

Features

	Feature addition: view predicates. These are exposed as the
request_method, request_param, and containment
attributes of a ZCML view declaration, or the respective
arguments to a @bfg_view decorator. View predicates can be used
to register a view for a more precise set of environment parameters
than was previously possible. For example, you can register two
views with the same name with different request_param
attributes. If the request.params dict contains ‘foo’
(request_param=”foo”), one view might be called; if it contains
‘bar’ (request_param=”bar”), another view might be called.
request_param can also name a key/value pair ala foo=123.
This will match only when the foo key is in the request.params
dict and it has the value ‘123’. This particular example makes it
possible to write separate view functions for different form
submissions. The other predicates, containment and
request_method work similarly. containment is a view
predicate that will match only when the context’s graph lineage has
an object possessing a particular class or interface, for example.
request_method is a view predicate that will match when the HTTP
REQUEST_METHOD equals some string (eg. ‘POST’).

	The @bfg_view decorator now accepts three additional arguments:
request_method, request_param, and containment.
request_method is used when you’d like the view to match only a
request with a particular HTTP REQUEST_METHOD; a string naming
the REQUEST_METHOD can also be supplied as request_type for
backwards compatibility. request_param is used when you’d like
a view to match only a request that contains a particular
request.params key (with or without a value). containment
is used when you’d like to match a request that has a context that
has some class or interface in its graph lineage. These are
collectively known as “view predicates”.

	The route ZCML directive now honors view_request_method,
view_request_param and view_containment attributes, which
pass along these values to the associated view if any is provided.
Additionally, the request_type attribute can now be spelled as
view_request_type, and permission can be spelled as
view_permission. Any attribute which starts with view_ can
now be spelled without the view_ prefix, so view_for can be
spelled as for now, etc. Both forms are documented in the
urldispatch narraitve documentation chapter.

	The request_param ZCML view directive attribute (and its
bfg_view decorator cousin) can now specify both a key and a
value. For example, request_param="foo=123" means that the foo
key must have a value of 123 for the view to “match”.

	Allow repoze.bfg.traversal.find_interface API to use a class
object as the argument to compare against the model passed in.
This means you can now do find_interface(model, SomeClass) and
the first object which is found in the lineage which has
SomeClass as its class (or the first object found which has
SomeClass as any of its superclasses) will be returned.

	Added static ZCML directive which registers a route for a view
that serves up files in a directory. See the “Views” narrative
documentation chapter’s “Serving Static Resources Using a ZCML
Directive” section for more information.

	The repoze.bfg.view.static class now accepts a string as its
first argument (“root_dir”) that represents a package-relative name
e.g. somepackage:foo/bar/static. This is now the preferred
mechanism for spelling package-relative static paths using this
class. A package_name keyword argument has been left around for
backwards compatibility. If it is supplied, it will be honored.

	The API repoze.bfg.testing.registerView now takes a
permission argument. Use this instead of using
repoze.bfg.testing.registerViewPermission.

	The ordering of route declarations vs. the ordering of view
declarations that use a “route_name” in ZCML no longer matters.
Previously it had been impossible to use a route_name from a route
that had not yet been defined in ZCML (order-wise) within a “view”
declaration.

	The repoze.bfg router now catches both
repoze.bfg.security.Unauthorized and
repoze.bfg.view.NotFound exceptions while rendering a view.
When the router catches an Unauthorized, it returns the
registered forbidden view. When the router catches a NotFound,
it returns the registered notfound view.

Internal

	Change urldispatch internals: Route object is now constructed using
a path, a name, and a factory instead of a name, a matcher, a
generator, and a factory.

	Move (non-API) default_view, default_forbidden_view, and
default_notfound_view functions into the repoze.bfg.view module
(moved from repoze.bfg.router).

	Removed ViewPermissionFactory from repoze.bfg.security. View
permission checking is now done by registering and looking up an
ISecuredView.

	The static ZCML directive now uses a custom root factory when
constructing a route.

	The interface IRequestFactories was removed from the
repoze.bfg.interfaces module. This interface was never an API.

	The function named named_request_factories and the data
structure named DEFAULT_REQUEST_FACTORIES have been removed from
the repoze.bfg.request module. These were never APIs.

	The IViewPermissionFactory interface has been removed. This was
never an API.

Documentation

	Request-only-convention examples in the “Views” narrative
documentation were broken.

	Fixed documentation bugs related to forget and remember in security API
docs.

	Fixed documentation for repoze.bfg.view.static (in narrative
Views chapter).

Deprecations

	The API repoze.bfg.testing.registerViewPermission has been
deprecated.

Backwards Incompatibilities

	The interfaces IPOSTRequest, IGETRequest, IPUTRequest,
IDELETERequest, and IHEADRequest have been removed from the
repoze.bfg.interfaces module. These were not documented as APIs
post-1.0. Instead of using one of these, use a request_method
ZCML attribute or request_method bfg_view decorator parameter
containing an HTTP method name (one of GET, POST, HEAD,
PUT, DELETE) instead of one of these interfaces if you were
using one explicitly. Passing a string in the set (GET,
HEAD, PUT, POST, DELETE) as a request_type
argument will work too. Rationale: instead of relying on interfaces
attached to the request object, BFG now uses a “view predicate” to
determine the request type.

	Views registered without the help of the ZCML view directive are
now responsible for performing their own authorization checking.

	The registry_manager backwards compatibility alias importable
from “repoze.bfg.registry”, deprecated since repoze.bfg 0.9 has been
removed. If you are tring to use the registry manager within a
debug script of your own, use a combination of the
“repoze.bfg.paster.get_app” and “repoze.bfg.scripting.get_root” APIs
instead.

	The INotFoundAppFactory interface has been removed; it has
been deprecated since repoze.bfg 0.9. If you have something like
the following in your configure.zcml:

<utility provides="repoze.bfg.interfaces.INotFoundAppFactory"
 component="helloworld.factories.notfound_app_factory"/>

Replace it with something like:

<notfound
 view="helloworld.views.notfound_view"/>

See “Changing the Not Found View” in the “Hooks” chapter of the
documentation for more information.

	The IUnauthorizedAppFactory interface has been removed; it has
been deprecated since repoze.bfg 0.9. If you have something like
the following in your configure.zcml:

<utility provides="repoze.bfg.interfaces.IUnauthorizedAppFactory"
 component="helloworld.factories.unauthorized_app_factory"/>

Replace it with something like:

<forbidden
 view="helloworld.views.forbidden_view"/>

See “Changing the Forbidden View” in the “Hooks” chapter of the
documentation for more information.

	ISecurityPolicy-based security policies, deprecated since
repoze.bfg 0.9, have been removed. If you have something like this
in your configure.zcml, it will no longer work:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.RemoteUserInheritingACLSecurityPolicy"
 />

If ZCML like the above exists in your application, you will receive
an error at startup time. Instead of the above, you’ll need
something like:

<remoteuserauthenticationpolicy/>
<aclauthorizationpolicy/>

This is just an example. See the “Security” chapter of the
repoze.bfg documentation for more information about configuring
security policies.

	Custom ZCML directives which register an authentication or
authorization policy (ala “authtktauthenticationpolicy” or
“aclauthorizationpolicy”) should register the policy “eagerly” in
the ZCML directive instead of from within a ZCML action. If an
authentication or authorization policy is not found in the component
registry by the view machinery during deferred ZCML processing, view
security will not work as expected.

1.0.1 (2009-07-22)

	Added support for has_resource, resource_isdir, and
resource_listdir to the resource “OverrideProvider”; this fixes
a bug with a symptom that a file could not be overridden in a
resource directory unless a file with the same name existed in the
original directory being overridden.

	Fixed documentation bug showing invalid test for values from the
matchdict: they are stored as attributes of the Article, rather
than subitems.

	Fixed documentation bug showing wrong environment key for the matchdict
produced by the matching route.

	Added a workaround for a bug in Python 2.6, 2.6.1, and 2.6.2 having
to do with a recursion error in the mimetypes module when trying to
serve static files from Paste’s FileApp:
http://bugs.python.org/issue5853. Symptom: File
“/usr/lib/python2.6/mimetypes.py”, line 244, in guess_type return
guess_type(url, strict) RuntimeError: maximum recursion depth
exceeded. Thanks to Armin Ronacher for identifying the symptom and
pointing out a fix.

	Minor edits to tutorials for accuracy based on feedback.

	Declared Paste and PasteDeploy dependencies.

1.0 (2009-07-05)

	Retested and added some content to GAE tutorial.

	Edited “Extending” narrative docs chapter.

	Added “Deleting the Database” section to the “Defining Models”
chapter of the traversal wiki tutorial.

	Spell checking of narratives and tutorials.

1.0b2 (2009-07-03)

	remoteuserauthenticationpolicy ZCML directive didn’t work
without an environ_key directive (didn’t match docs).

	Fix configure_zcml filespec check on Windows. Previously if an
absolute filesystem path including a drive letter was passed as
filename (or as configure_zcml in the options dict) to
repoze.bfg.router.make_app, it would be treated as a
package:resource_name specification.

	Fix inaccuracies and import errors in bfgwiki (traversal+ZODB) and
bfgwiki2 (urldispatch+SA) tutorials.

	Use bfgsite index for all tutorial setup.cfg files.

	Full documentation grammar/style/spelling audit.

1.0b1 (2009-07-02)

Features

	Allow a Paste config file (configure_zcml) value or an
environment variable (BFG_CONFIGURE_ZCML) to name a ZCML file
(optionally package-relative) that will be used to bootstrap the
application. Previously, the integrator could not influence which
ZCML file was used to do the boostrapping (only the original
application developer could do so).

Documentation

	Added a “Resources” chapter to the narrative documentation which
explains how to override resources within one package from another
package.

	Added an “Extending” chapter to the narrative documentation which
explains how to extend or modify an existing BFG application using
another Python package and ZCML.

1.0a9 (2009-07-01)

Features

	Make it possible to pass strings in the form
“package_name:relative/path” to APIs like render_template,
render_template_to_response, and get_template. Sometimes
the package in which a caller lives is a direct namespace package,
so the module which is returned is semi-useless for navigating from.
In this way, the caller can control the horizontal and vertical of
where things get looked up from.

1.0a8 (2009-07-01)

Deprecations

	Deprecate the authentication_policy and authorization_policy
arguments to repoze.bfg.router.make_app. Instead, developers
should use the various authentication policy ZCML directives
(repozewho1authenticationpolicy,
remoteuserauthenticationpolicy and
authtktauthenticationpolicy) and the aclauthorizationpolicy`
authorization policy directive as described in the changes to the
“Security” narrative documenation chapter and the wiki tutorials.

Features

	Add three new ZCML directives which configure authentication
policies:
	repozewho1authenticationpolicy

	remoteuserauthenticationpolicy

	authtktauthenticationpolicy

	Add a new ZCML directive which configures an ACL authorization
policy named aclauthorizationpolicy.

Bug Fixes

	Bug fix: when a repoze.bfg.resource.PackageOverrides class was
instantiated, and the package it was overriding already had a
__loader__ attribute, it would fail at startup time, even if the
__loader__ attribute was another PackageOverrides instance. We
now replace any __loader__ that is also a PackageOverrides
instance. Symptom: ConfigurationExecutionError: <type
'exceptions.TypeError'>: Package <module 'karl.views' from
'/Users/chrism/projects/osi/bfgenv/src/karl/karl/views/__init__.pyc'>
already has a __loader__ (probably a module in a zipped egg).

1.0a7 (2009-06-30)

Features

	Add a reload_resources configuration file setting (aka the
BFG_RELOAD_RESOURCES environment variable). When this is set to
true, the server never needs to be restarted when moving files
between directory resource overrides (esp. for templates currently).

	Add a reload_all configuration file setting (aka the
BFG_RELOAD_ALL environment variable) that implies both
reload_resources and reload_templates.

	The static helper view class now uses a PackageURLParser in
order to allow for the overriding of static resources (CSS / logo
files, etc) using the resource ZCML directive. The
PackageURLParser class was added to a (new) static module in
BFG; it is a subclass of the StaticURLParser class in
paste.urlparser.

	The repoze.bfg.templating.renderer_from_cache function now
checks for the reload_resources setting; if it’s true, it does
not register a template renderer (it won’t use the registry as a
template renderer cache).

Documentation

	Add pkg_resources to the glossary.

	Update the “Environment” docs to note the existence of
reload_resources and reload_all.

	Updated the bfg_alchemy paster template to include two views:
the view on the root shows a list of links to records; the view on
a record shows the details for that object.

Internal

	Use a colon instead of a tab as the separator between package name
and relpath to form the “spec” when register a ITemplateRenderer.

	Register a repoze.bfg.resource.OverrideProvider as a
pkg_resources provider only for modules which are known to have
overrides, instead of globally, when a <resource> directive is used
(performance).

1.0a6 (2009-06-29)

Bug Fixes

	Use caller_package function instead of caller_module
function within templating to avoid needing to name the caller
module in resource overrides (actually match docs).

	Make it possible to override templates stored directly in a module
with templates in a subdirectory of the same module, stored directly
within another module, or stored in a subdirectory of another module
(actually match docs).

1.0a5 (2009-06-28)

Features

	A new ZCML directive exists named “resource”. This ZCML directive
allows you to override Chameleon templates within a package (both
directories full of templates and individual template files) with
other templates in the same package or within another package. This
allows you to “fake out” a view’s use of a template, causing it to
retrieve a different template than the one actually named by a
relative path to a call like
render_template_to_response('templates/mytemplate.pt'). For
example, you can override a template file by doing:

<resource
 to_override="some.package:templates/mytemplate.pt"
 override_with="another.package:othertemplates/anothertemplate.pt"
 />

The string passed to “to_override” and “override_with” is named a
“specification”. The colon separator in a specification separates
the package name from a package-relative directory name. The colon
and the following relative path are optional. If they are not
specified, the override attempts to resolve every lookup into a
package from the directory of another package. For example:

<resource
 to_override="some.package"
 override_with="another.package"
 />

Individual subdirectories within a package can also be overridden:

<resource
 to_override="some.package:templates/"
 override_with="another.package:othertemplates/"
 />

If you wish to override a directory with another directory, you must
make sure to attach the slash to the end of both the to_override
specification and the override_with specification. If you fail
to attach a slash to the end of a specification that points a
directory, you will get unexpected results. You cannot override a
directory specification with a file specification, and vice versa (a
startup error will occur if you try).

You cannot override a resource with itself (a startup error will
occur if you try).

Only individual package resources may be overridden. Overrides
will not traverse through subpackages within an overridden package.
This means that if you want to override resources for both
some.package:templates, and some.package.views:templates,
you will need to register two overrides.

The package name in a specification may start with a dot, meaning
that the package is relative to the package in which the ZCML file
resides. For example:

<resource
 to_override=".subpackage:templates/"
 override_with="another.package:templates/"
 />

Overrides for the same to_overrides specification can be named
multiple times within ZCML. Each override_with path will be
consulted in the order defined within ZCML, forming an override
search path.

Resource overrides can actually override resources other than
templates. Any software which uses the pkg_resources
get_resource_filename, get_resource_stream or
get_resource_string APIs will obtain an overridden file when an
override is used. However, the only built-in facility which uses
the pkg_resources API within BFG is the templating stuff, so we
only call out template overrides here.

	Use the pkg_resources API to locate template filenames instead
of dead-reckoning using the os.path module.

	The repoze.bfg.templating module now uses pkg_resources to
locate and register template files instead of using an absolute
path name.

1.0a4 (2009-06-25)

Features

	Cause :segment matches in route paths to put a Unicode-decoded
and URL-dequoted value in the matchdict for the value matched.
Previously a non-decoded non-URL-dequoted string was placed in the
matchdict as the value.

	Cause *remainder matches in route paths to put a tuple in the
matchdict dictionary in order to be able to present Unicode-decoded
and URL-dequoted values for the traversal path. Previously a
non-decoded non-URL-dequoted string was placed in the matchdict as
the value.

	Add optional max_age keyword value to the remember method of
repoze.bfg.authentication.AuthTktAuthenticationPolicy; if this
value is passed to remember, the generated cookie will have a
corresponding Max-Age value.

Documentation

	Add information to the URL Dispatch narrative documentation about
path pattern matching syntax.

Bug Fixes

	Make route_url URL-quote segment replacements during generation.
Remainder segments are not quoted.

1.0a3 (2009-06-24)

Implementation Changes

	repoze.bfg no longer relies on the Routes package to interpret
URL paths. All known existing path patterns will continue to
work with the reimplemented logic, which lives in
repoze.bfg.urldispatch. <route> ZCML directives which use
certain attributes (uncommon ones) may not work (see “Backwards
Incompatibilities” below).

Bug Fixes

	model_url when passed a request that was generated as a result
of a route match would fail in a call to route.generate.

	BFG-on-GAE didn’t work due to a corner case bug in the fallback
Python implementation of threading.local (symptom:
“Initialization arguments are not supported”). Thanks to Michael
Bernstein for the bug report.

Documentation

	Added a “corner case” explanation to the “Hybrid Apps” chapter
explaining what to do when “the wrong” view is matched.

	Use repoze.bfg.url.route_url API in tutorials rather than Routes
url_for API.

Features

	Added the repoze.bfg.url.route_url API. This API allows you to
generate URLs based on <route> declarations. See the URL
Dispatch narrative chapter and the “repoze.bfg.url” module API
documentation for more information.

Backwards Incompatibilities

	As a result of disusing Routes, using the Routes url_for API
inside a BFG application (as was suggested by previous iterations of
tutorials) will no longer work. Use the
repoze.bfg.url.route_url method instead.

	The following attributes on the <route> ZCML directive no longer
work: encoding, static, filter, condition_method,
condition_subdomain, condition_function, explicit, or
subdomains. These were all Routes features.

	The <route> ZCML directive no longer supports the
<requirement> subdirective. This was a Routes feature.

1.0a2 (2009-06-23)

Bug Fixes

	The bfg_routesalchemy paster template app tests failed due to a
mismatch between test and view signatures.

Features

	Add a view_for attribute to the route ZCML directive. This
attribute should refer to an interface or a class (ala the for
attribute of the view ZCML directive).

Documentation

	Conditional documentation in installation section (“how to install a
Python interpreter”).

Backwards Incompatibilities

	The callback argument of the repoze.bfg.authentication
authentication policies named RepozeWho1AuthenticationPolicy,
RemoteUserAuthenticationPolicy, and
AuthTktAuthenticationPolicy now must accept two positional
arguments: the orginal argument accepted by each (userid or
identity) plus a second argument, which will be the current request.
Apologies, this is required to service finding groups when there is
no “global” database connection.

1.0a1 (2009-06-22)

Features

	A new ZCML directive was added named notfound. This ZCML
directive can be used to name a view that should be invoked when the
request can’t otherwise be resolved to a view callable. For example:

<notfound
 view="helloworld.views.notfound_view"/>

	A new ZCML directive was added named forbidden. This ZCML
directive can be used to name a view that should be invoked when a
view callable for a request is found, but cannot be invoked due to
an authorization failure. For example:

<forbidden
 view="helloworld.views.forbidden_view"/>

	Allow views to be optionally defined as callables that accept only
a request object, instead of both a context and a request (which
still works, and always will). The following types work as views in
this style:

	functions that accept a single argument request, e.g.:

def aview(request):
 pass

	new and old-style classes that have an __init__ method that
accepts self, request, e.g.:

def View(object):
 __init__(self, request):
 pass

	Arbitrary callables that have a __call__ method that accepts
self, request, e.g.:

def AView(object):
 def __call__(self, request):
 pass
view = AView()

This likely should have been the calling convention all along, as
the request has context as an attribute already, and with views
called as a result of URL dispatch, having the context in the
arguments is not very useful. C’est la vie.

	Cache the absolute path in the caller’s package globals within
repoze.bfg.path to get rid of repeated (expensive) calls to
os.path.abspath.

	Add reissue_time and timeout parameters to
repoze.bfg.authentication.AuthTktAuthenticationPolicy
constructor. If these are passed, cookies will be reset every so
often (cadged from the same change to repoze.who lately).

	The matchdict related to the matching of a Routes route is available
on the request as the matchdict attribute:
request.matchdict. If no route matched, this attribute will be
None.

	Make 404 responses slightly cheaper by showing
environ["PATH_INFO"] on the notfound result page rather than the
fullly computed URL.

	Move LRU cache implementation into a separate package
(repoze.lru).

	The concepts of traversal and URL dispatch have been unified. It is
now possible to use the same sort of factory as both a traversal
“root factory” and what used to be referred to as a urldispatch
“context factory”.

	When the root factory argument (as a first argument) passed to
repoze.bfg.router.make_app is None, a default root factory
is used. This is in support of using routes as “root finders”; it
supplants the idea that there is a default
IRoutesContextFactory.

	The view` ZCML statement and the repoze.bfg.view.bfg_view
decorator now accept an extra argument: route_name. If a
route_name is specified, it must match the name of a previously
defined route statement. When it is specified, the view will
only be called when that route matches during a request.

	It is now possible to perfom traversal after a route has matched.
Use the pattern *traverse in a <route> path attribute
within ZCML, and the path remainder which it matches will be used as
a traversal path.

	When any route defined matches, the WSGI environment will now
contain a key bfg.routes.route (the Route object which matched),
and a key bfg.routes.matchdict (the result of calling route.match).

Deprecations

	Utility registrations against
repoze.bfg.interfaces.INotFoundView and
repoze.bfg.interfaces.IForbiddenView are now deprecated. Use
the notfound and forbidden ZCML directives instead (see the
“Hooks” chapter for more information). Such registrations will
continue to work, but the notfound and forbidden directives do
“extra work” to ensure that the callable named by the directive can
be called by the router even if it’s a class or
request-argument-only view.

Removals

	The IRoutesContext, IRoutesContextFactory, and
IContextNotFound interfaces were removed from
repoze.bfg.interfaces. These were never APIs.

	The repoze.bfg.urldispatch.RoutesContextNotFound,
repoze.bfg.urldispatch.RoutesModelTraverser and
repoze.bfg.urldispatch.RoutesContextURL classes were removed.
These were also never APIs.

Backwards Incompatibilities

	Moved the repoze.bfg.push module, which implemented the pushpage
decorator, into a separate distribution, repoze.bfg.pushpage.
Applications which used this decorator should continue to work after
adding that distribution to their installation requirements.

	Changing the default request factory via an IRequestFactory utility
registration (as used to be documented in the “Hooks” chapter’s
“Changing the request factory” section) is no longer supported. The
dance to manufacture a request is complicated as a result of
unifying traversal and url dispatch, making it highly unlikely for
anyone to be able to override it properly. For those who just want
to decorate or modify a request, use a NewRequestEvent subscriber
(see the Events chapter in the documentation).

	The repoze.bfg.IRequestFactory interface was removed. See the
bullet above for why.

	Routes “context factories” (spelled as the factory argument to a
route statement in ZCML) must now expect the WSGI environ as a
single argument rather than a set of keyword arguments. They can
obtain the match dictionary by asking for
environ[‘bfg.routes.matchdict’]. This is the same set of keywords
that used to be passed to urldispatch “context factories” in BFG 0.9
and below.

	Using the @zope.component.adapter decorator on a bfg view
function no longer works. Use the @repoze.bfg.view.bfg_view
decorator instead to mark a function (or a class) as a view.

	The name under which the matching route object is found in the
environ was changed from bfg.route to bfg.routes.route.

	Finding the root is now done before manufacturing a request object
(and sending a new request event) within the router (it used to be
performed afterwards).

	Adding *path_info to a route no longer changes the PATH_INFO for
a request that matches using URL dispatch. This feature was only
there to service the repoze.bfg.wsgi.wsgiapp2 decorator and it
did it wrong; use *subpath instead now.

	The values of subpath, traversed, and virtual_root_path
attached to the request object are always now tuples instead of
lists (performance).

Bug Fixes

	The bfg_alchemy Paster template named “repoze.tm” in its
pipeline rather than “repoze.tm2”, causing the startup to fail.

	Move BBB logic for registering an
IAuthenticationPolicy/IForbiddenView/INotFoundView based on older
concepts from the router module’s make_app function into the
repoze.bfg.zcml.zcml_configure callable, to service
compatibility with scripts that use “zope.configuration.xmlconfig”
(replace with repoze.bfg.zml.zcml_configure as necessary to get
BBB logic)

Documentation

	Add interface docs related to how to create authentication policies
and authorization policies to the “Security” narrative chapter.

	Added a (fairly sad) “Combining Traversal and URL Dispatch” chapter
to the narrative documentation. This explains the usage of
*traverse and *subpath in routes URL patters.

	A “router” chapter explaining the request/response lifecycle at a
high level was added.

	Replaced all mentions and explanations of a routes “context factory”
with equivalent explanations of a “root factory” (context factories
have been disused).

	Updated Routes bfgwiki2 tutorial to reflect the fact that context
factories are now no longer used.

0.9.1 (2009-06-02)

Features

	Add API named repoze.bfg.settings.get_settings which retrieves a
derivation of values passed as the options value of
repoze.bfg.router.make_app. This API should be preferred
instead of using getUtility(ISettings). I added a new
repoze.bfg.settings API document as well.

Bug Fixes

	Restored missing entry point declaration for bfg_alchemy paster
template, which was accidentally removed in 0.9.

Documentation

	Fix a reference to wsgiapp in the wsgiapp2 API documentation
within the repoze.bfg.wsgi module.

API Removals

	The repoze.bfg.location.locate API was removed: it didn’t do
enough to be very helpful and had a misleading name.

0.9 (2009-06-01)

Bug Fixes

	It was not possible to register a custom IRoutesContextFactory
for use as a default context factory as documented in the “Hooks”
chapter.

Features

	The request_type argument of ZCML view declarations and
bfg_view decorators can now be one of the strings GET,
POST, PUT, DELETE, or HEAD instead of a reference to
the respective interface type imported from
repoze.bfg.interfaces.

	The route ZCML directive now accepts request_type as an
alias for its condition_method argument for symmetry with the
view directive.

	The bfg_routesalchemy paster template now provides a unit test
and actually uses the database during a view rendering.

Removals

	Remove repoze.bfg.threadlocal.setManager. It was only used in
unit tests.

	Remove repoze.bfg.wsgi.HTTPException,
repoze.bfg.wsgi.NotFound, and repoze.bfg.wsgi.Unauthorized.
These classes were disused with the introduction of the
IUnauthorizedView and INotFoundView machinery.

Documentation

	Add description to narrative templating chapter about how to use
Chameleon text templates.

	Changed Views narrative chapter to use method strings rather than
interface types, and moved advanced interface type usage to Events
narrative chapter.

	Added a Routes+SQLAlchemy wiki tutorial.

0.9a8 (2009-05-31)

Features

	It is now possible to register a custom
repoze.bfg.interfaces.INotFoundView for a given application.
This feature replaces the
repoze.bfg.interfaces.INotFoundAppFactory feature previously
described in the Hooks chapter. The INotFoundView will be called
when the framework detects that a view lookup done as a result of a
request fails; it should accept a context object and a request
object; it should return an IResponse object (a webob response,
basically). See the Hooks narrative chapter of the BFG docs for
more info.

	The error presented when a view invoked by the router returns a
non-response object now includes the view’s name for troubleshooting
purposes.

Bug Fixes

	A “new response” event is emitted for forbidden and notfound views.

Deprecations

	The repoze.bfg.interfaces.INotFoundAppFactory interface has been
deprecated in favor of using the new
repoze.bfg.interfaces.INotFoundView mechanism.

Renames

	Renamed repoze.bfg.interfaces.IForbiddenResponseFactory to
repoze.bfg.interfaces.IForbiddenView.

0.9a7 (2009-05-30)

Features

	Remove “context” argument from effective_principals and
authenticated_userid function APIs in repoze.bfg.security,
effectively a doing reversion to 0.8 and before behavior. Both
functions now again accept only the request parameter.

0.9a6 (2009-05-29)

Documentation

	Changed “BFG Wiki” tutorial to use AuthTktAuthenticationPolicy
rather than repoze.who.

Features

	Add an AuthTktAuthenticationPolicy. This policy retrieves
credentials from an auth_tkt cookie managed by the application
itself (instead of relying on an upstream data source for
authentication data). See the Security API chapter of the
documentation for more info.

	Allow RemoteUserAuthenticationPolicy and
RepozeWho1AuthenticationPolicy to accept various constructor
arguments. See the Security API chapter of the documentation for
more info.

0.9a5 (2009-05-28)

Features

	Add a get_app API functions to the paster module. This
obtains a WSGI application from a config file given a config file
name and a section name. See the repoze.bfg.paster API docs for
more information.

	Add a new module named scripting. It contains a get_root
API function, which, provided a Router instance, returns a traversal
root object and a “closer”. See the repoze.bfg.scripting API
docs for more info.

0.9a4 (2009-05-27)

Bug Fixes

	Try checking for an “old style” security policy after we parse
ZCML (thinko).

0.9a3 (2009-05-27)

Features

	Allow IAuthenticationPolicy and IAuthorizationPolicy to be
overridden via ZCML registrations (do ZCML parsing after
registering these in router.py).

Documentation

	Added “BFG Wiki” tutorial to documentation; it describes
step-by-step how to create a traversal-based ZODB application with
authentication.

Deprecations

	Added deprecations for imports of ACLSecurityPolicy,
InheritingACLSecurityPolicy, RemoteUserACLSecurityPolicy,
RemoteUserInheritingACLSecurityPolicy, WhoACLSecurityPolicy,
and WhoInheritingACLSecurityPolicy from the
repoze.bfg.security module; for the meantime (for backwards
compatibility purposes) these live in the repoze.bfg.secpols
module. Note however, that the entire concept of a “security
policy” is deprecated in BFG in favor of separate authentication and
authorization policies, so any use of a security policy will
generate additional deprecation warnings even if you do start using
repoze.bfg.secpols. repoze.bfg.secpols will disappear in a
future release of repoze.bfg.

Deprecated Import Alias Removals

	Remove repoze.bfg.template module. All imports from this
package have been deprecated since 0.3.8. Instead, import
get_template, render_template, and
render_template_to_response from the
repoze.bfg.chameleon_zpt module.

	Remove backwards compatibility import alias for
repoze.bfg.traversal.split_path (deprecated since 0.6.5). This
must now be imported as repoze.bfg.traversal.traversal_path).

	Remove backwards compatibility import alias for
repoze.bfg.urldispatch.RoutesContext (deprecated since 0.6.5).
This must now be imported as
repoze.bfg.urldispatch.DefaultRoutesContext.

	Removed backwards compatibility import aliases for
repoze.bfg.router.get_options and repoze.bfg.router.Settings
(deprecated since 0.6.2). These both must now be imported from
repoze.bfg.settings.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.IRootPolicy (deprecated since 0.6.2). It
must be imported as repoze.bfg.interfaces.IRootFactory now.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.ITemplate (deprecated since 0.4.4). It
must be imported as repoze.bfg.interfaces.ITemplateRenderer now.

	Removed backwards compatibility import alias for
repoze.bfg.interfaces.ITemplateFactory (deprecated since 0.4.4).
It must be imported as
repoze.bfg.interfaces.ITemplateRendererFactory now.

	Removed backwards compatibility import alias for
repoze.bfg.chameleon_zpt.ZPTTemplateFactory (deprecated since
0.4.4). This must be imported as repoze.bfg.ZPTTemplateRenderer
now.

0.9a2 (2009-05-27)

Features

	A paster command has been added named “bfgshell”. This command can
be used to get an interactive prompt with your BFG root object in
the global namespace. E.g.:

bin/paster bfgshell /path/to/myapp.ini myapp

See the Project chapter in the BFG documentation for more
information.

Deprecations

	The name repoze.bfg.registry.registry_manager was never an API,
but scripts in the wild were using it to set up an environment for
use under a debug shell. A backwards compatibility shim has been
added for this purpose, but the feature is deprecated.

0.9a1 (2009-5-27)

Features

	New API functions named forget and remember are available in
the security module. The forget function returns headers
which will cause the currently authenticated user to be logged out
when set in a response. The remember function (when passed the
proper arguments) will return headers which will cause a principal
to be “logged in” when set in a response. See the Security API
chapter of the docs for more info.

	New keyword arguments to the repoze.bfg.router.make_app call
have been added: authentication_policy and
authorization_policy. These should, respectively, be an
implementation of an authentication policy (an object implementing
the repoze.bfg.interfaces.IAuthenticationPolicy interface) and
an implementation of an authorization policy (an object implementing
repoze.bfg.interfaces.IAuthorizationPolicy). Concrete
implementations of authentication policies exist in
repoze.bfg.authentication. Concrete implementations of
authorization policies exist in repoze.bfg.authorization.

Both authentication_policy and authorization_policy default
to None.

If authentication_policy is None, but
authorization_policy is not None, then
authorization_policy is ignored (the ability to do authorization
depends on authentication).

If the authentication_policy argument is not None, and the
authorization_policy argument is None, the authorization
policy defaults to an authorization implementation that uses ACLs
(repoze.bfg.authorization.ACLAuthorizationPolicy).

We no longer encourage configuration of “security policies” using
ZCML, as previously we did for ISecurityPolicy. This is because
it’s not uncommon to need to configure settings for concrete
authorization or authentication policies using paste .ini
parameters; the app entry point for your application is the natural
place to do this.

	Two new abstractions have been added in the way of adapters used by
the system: an IAuthorizationPolicy and an
IAuthenticationPolicy. A combination of these (as registered by
the securitypolicy ZCML directive) take the place of the
ISecurityPolicy abstraction in previous releases of repoze.who.
The API functions in repoze.who.security (such as
authentication_userid, effective_principals,
has_permission, and so on) have been changed to try to make use
of these new adapters. If you’re using an older ISecurityPolicy
adapter, the system will still work, but it will print deprecation
warnings when such a policy is used.

	The way the (internal) IViewPermission utilities registered via ZCML
are invoked has changed. They are purely adapters now, returning a
boolean result, rather than returning a callable. You shouldn’t have
been using these anyway. ;-)

	New concrete implementations of IAuthenticationPolicy have been
added to the repoze.bfg.authentication module:
RepozeWho1AuthenticationPolicy which uses repoze.who
identity to retrieve authentication data from and
RemoteUserAuthenticationPolicy, which uses the REMOTE_USER
value in the WSGI environment to retrieve authentication data.

	A new concrete implementation of IAuthorizationPolicy has been added
to the repoze.bfg.authorization module:
ACLAuthorizationPolicy which uses ACL inheritance to do
authorization.

	It is now possible to register a custom
repoze.bfg.interfaces.IForbiddenResponseFactory for a given
application. This feature replaces the
repoze.bfg.interfaces.IUnauthorizedAppFactory feature previously
described in the Hooks chapter. The IForbiddenResponseFactory will
be called when the framework detects an authorization failure; it
should accept a context object and a request object; it should
return an IResponse object (a webob response, basically). Read the
below point for more info and see the Hooks narrative chapter of the
BFG docs for more info.

Backwards Incompatibilities

	Custom NotFound and Forbidden (nee’ Unauthorized) WSGI applications
(registered as a utility for INotFoundAppFactory and
IUnauthorizedAppFactory) could rely on an environment key named
message describing the circumstance of the response. This key
has been renamed to repoze.bfg.message (as per the WSGI spec,
which requires environment extensions to contain dots).

Deprecations

	The repoze.bfg.interfaces.IUnauthorizedAppFactory interface has
been deprecated in favor of using the new
repoze.bfg.interfaces.IForbiddenResponseFactory mechanism.

	The view_execution_permitted API should now be imported from the
repoze.bfg.security module instead of the repoze.bfg.view
module.

	The authenticated_userid and effective_principals APIs in
repoze.bfg.security used to only take a single argument
(request). They now accept two arguments (context and
request). Calling them with a single argument is still
supported but issues a deprecation warning. (NOTE: this change was
reverted in 0.9a7; meaning the 0.9 versions of these functions
again accept request only, just like 0.8 and before).

	Use of “old-style” security policies (those base on ISecurityPolicy)
is now deprecated. See the “Security” chapter of the docs for info
about activating an authorization policy and an authentication poicy.

0.8.1 (2009-05-21)

Features

	Class objects may now be used as view callables (both via ZCML and
via use of the bfg_view decorator in Python 2.6 as a class
decorator). The calling semantics when using a class as a view
callable is similar to that of using a class as a Zope “browser
view”: the class’ __init__ must accept two positional parameters
(conventionally named context, and request). The resulting
instance must be callable (it must have a __call__ method).
When called, the instance should return a response. For example:

 from webob import Response

 class MyView(object):
 def __init__(self, context, request):
 self.context = context
 self.request = request

 def __call__(self):
 return Response('hello from %s!' % self.context)

See the "Views" chapter in the documentation and the
``repoze.bfg.view`` API documentation for more information.

	Removed the pickling of ZCML actions (the code that wrote
configure.zcml.cache next to configure.zcml files in
projects). The code which managed writing and reading of the cache
file was a source of subtle bugs when users switched between
imperative (e.g. @bfg_view) registrations and declarative
registrations (e.g. the view directive in ZCML) on the same
project. On a moderately-sized project (535 ZCML actions and 15 ZCML
files), executing actions read from the pickle was saving us only
about 200ms (2.5 sec vs 2.7 sec average). On very small projects (1
ZCML file and 4 actions), startup time was comparable, and sometimes
even slower when reading from the pickle, and both ways were so fast
that it really just didn’t matter anyway.

0.8 (2009-05-18)

Features

	Added a traverse function to the repoze.bfg.traversal
module. This function may be used to retrieve certain values
computed during path resolution. See the Traversal API chapter of
the documentation for more information about this function.

Deprecations

	Internal: ITraverser callables should now return a dictionary
rather than a tuple. Up until 0.7.0, all ITraversers were assumed
to return a 3-tuple. In 0.7.1, ITraversers were assumed to return a
6-tuple. As (by evidence) it’s likely we’ll need to add further
information to the return value of an ITraverser callable, 0.8
assumes that an ITraverser return a dictionary with certain elements
in it. See the repoze.bfg.interfaces.ITraverser interface for
the list of keys that should be present in the dictionary.
ITraversers which return tuples will still work, although a
deprecation warning will be issued.

Backwards Incompatibilities

	If your code used the ITraverser interface directly (not via an API
function such as find_model) via an adapter lookup, you’ll need
to change your code to expect a dictionary rather than a 3- or
6-tuple if your code ever gets return values from the default
ModelGraphTraverser or RoutesModelTraverser adapters.

0.8a7 (2009-05-16)

Backwards Incompatibilities

	The RoutesMapper class in repoze.bfg.urldispatch has been
removed, as well as its documentation. It had been deprecated since
0.6.3. Code in repoze.bfg.urldispatch.RoutesModelTraverser
which catered to it has also been removed.

	The semantics of the route ZCML directive have been simplified.
Previously, it was assumed that to use a route, you wanted to map a
route to an externally registered view. The new route directive
instead has a view attribute which is required, specifying the
dotted path to a view callable. When a route directive is
processed, a view is registered using the name attribute of the
route directive as its name and the callable as its value. The
view_name and provides attributes of the route directive
are therefore no longer used. Effectively, if you were previously
using the route directive, it means you must change a pair of
ZCML directives that look like this:

<route
 name="home"
 path=""
 view_name="login"
 factory=".models.root.Root"
 />

<view
 for=".models.root.Root"
 name="login"
 view=".views.login_view"
 />

To a ZCML directive that looks like this:

<route
 name="home"
 path=""
 view=".views.login_view"
 factory=".models.root.Root"
 />

In other words, to make old code work, remove the view
directives that were only there to serve the purpose of backing
route directives, and move their view= attribute into the
route directive itself.

This change also necessitated that the name attribute of the
route directive is now required. If you were previously using
route directives without a name attribute, you’ll need to
add one (the name is arbitrary, but must be unique among all
route and view statements).

The provides attribute of the route directive has also been
removed. This directive specified a sequence of interface types
that the generated context would be decorated with. Since route
views are always generated now for a single interface
(repoze.bfg.IRoutesContext) as opposed to being looked up
arbitrarily, there is no need to decorate any context to ensure a
view is found.

Documentation

	Added API docs for the repoze.bfg.testing methods
registerAdapter, registerUtiity, registerSubscriber, and
cleanUp.

	Added glossary entry for “root factory”.

	Noted existence of repoze.bfg.pagetemplate template bindings in
“Available Add On Template System Bindings” in Templates chapter in
narrative docs.

	Update “Templates” narrative chapter in docs (expand to show a
sample template and correct macro example).

Features

	Courtesty Carlos de la Guardia, added an alchemy Paster
template. This paster template sets up a BFG project that uses
SQAlchemy (with SQLite) and uses traversal to resolve URLs. (no
Routes areused). This template can be used via paster create -t
bfg_alchemy.

	The Routes Route object used to resolve the match is now put
into the environment as bfg.route when URL dispatch is used.

	You can now change the default Routes “context factory” globally.
See the “ZCML Hooks” chapter of the documentation (in the “Changing
the Default Routes Context Factory” section).

0.8a6 (2009-05-11)

Features

	Added a routesalchemy Paster template. This paster template
sets up a BFG project that uses SQAlchemy (with SQLite) and uses
Routes exclusively to resolve URLs (no traversal root factory is
used). This template can be used via paster create -t
bfg_routesalchemy.

Documentation

	Added documentation to the URL Dispatch chapter about how to catch
the root URL using a ZCML route directive.

	Added documentation to the URL Dispatch chapter about how to perform
a cleanup function at the end of a request (e.g. close the SQL
connection).

Bug Fixes

	In version 0.6.3, passing a get_root callback (a “root factory”)
to repoze.bfg.router.make_app became optional if any route
declaration was made in ZCML. The intent was to make it possible to
disuse traversal entirely, instead relying entirely on URL dispatch
(Routes) to resolve all contexts. However a compound set of bugs
prevented usage of a Routes-based root view (a view which responds
to “/”). One bug existed in repoze.bfg.urldispatch`, another
existed in Routes itself.

To resolve this issue, the urldispatch module was fixed, and a fork
of the Routes trunk was put into the “dev” index named
Routes-1.11dev-chrism-home. The source for the fork exists at
http://bitbucket.org/chrism/routes-home/; its contents have been
merged into the Routes trunk (what will be Routes 1.11).

0.8a5 (2009-05-08)

Features

	Two new security policies were added:
RemoteUserInheritingACLSecurityPolicy and
WhoInheritingACLSecurityPolicy. These are security policies which
take into account all ACLs defined in the lineage of a context
rather than stopping at the first ACL found in a lineage. See the
“Security” chapter of the API documentation for more information.

	The API and narrative documentation dealing with security was
changed to introduce the new “inheriting” security policy variants.

	Added glossary entry for “lineage”.

Deprecations

	The security policy previously named
RepozeWhoIdentityACLSecurityPolicy now has the slightly saner
name of WhoACLSecurityPolicy. A deprecation warning is emitted
when this policy is imported under the “old” name; usually this is
due to its use in ZCML within your application. If you’re getting
this deprecation warning, change your ZCML to use the new name,
e.g. change:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.RepozeWhoIdentityACLSecurityPolicy"
 />

To:

<utility
 provides="repoze.bfg.interfaces.ISecurityPolicy"
 factory="repoze.bfg.security.WhoACLSecurityPolicy"
 />

0.8a4 (2009-05-04)

Features

	zope.testing is no longer a direct dependency, although our
dependencies (such as zope.interface, repoze.zcml, etc)
still depend on it.

	Tested on Google App Engine. Added a tutorial to the documentation
explaining how to deploy a BFG app to GAE.

Backwards Incompatibilities

	Applications which rely on zope.testing.cleanup.cleanUp in unit
tests can still use that function indefinitely. However, for
maximum forward compatibility, they should import cleanUp from
repoze.bfg.testing instead of from zope.testing.cleanup.
The BFG paster templates and docs have been changed to use this
function instead of the zope.testing.cleanup version.

0.8a3 (2009-05-03)

Features

	Don’t require a successful import of zope.testing at BFG
application runtime. This allows us to get rid of zope.testing
on platforms like GAE which have file limits.

0.8a2 (2009-05-02)

Features

	We no longer include the configure.zcml of the chameleon.zpt
package within the configure.zcml of the “repoze.bfg.includes”
package. This has been a no-op for some time now.

	The repoze.bfg.chameleon_zpt package no longer imports from
chameleon.zpt at module scope, deferring the import until later
within a method call. The chameleon.zpt package can’t be
imported on platforms like GAE.

0.8a1 (2009-05-02)

Deprecation Warning and Import Alias Removals

	Since version 0.6.1, a deprecation warning has been emitted when the
name model_url is imported from the repoze.bfg.traversal
module. This import alias (and the deprecation warning) has been
removed. Any import of the model_url function will now need to
be done from repoze.bfg.url; any import of the name
model_url from repoze.bfg.traversal will now fail. This was
done to remove a dependency on zope.deferredimport.

	Since version 0.6.5, a deprecation warning has been emitted when the
name RoutesModelTraverser is imported from the
repoze.bfg.traversal module. This import alias (and the
deprecation warning) has been removed. Any import of the
RoutesModelTraverser class will now need to be done from
repoze.bfg.urldispatch; any import of the name
RoutesModelTraverser from repoze.bfg.traversal will now
fail. This was done to remove a dependency on zope.deferredimport.

Features

	This release of repoze.bfg is “C-free”. This means it has no
hard dependencies on any software that must be compiled from C
source at installation time. In particular, repoze.bfg no
longer depends on the lxml package.

This change has introduced some backwards incompatibilities,
described in the “Backwards Incompatibilities” section below.

	This release was tested on Windows XP. It appears to work fine and
all the tests pass.

Backwards Incompatibilities

Incompatibilities related to making repoze.bfg “C-free”:

	Removed the repoze.bfg.chameleon_genshi module, and thus support
for Genshi-style chameleon templates. Genshi-style Chameleon
templates depend upon lxml, which is implemented in C (as
opposed to pure Python) and the repoze.bfg core is “C-free” as
of this release. You may get Genshi-style Chameleon support back by
installing the repoze.bfg.chameleon_genshi package availalable
from http://svn.repoze.org/repoze.bfg.chameleon_genshi (also
available in the index at http://dist.repoze.org/bfg/0.8/simple).
All existing code that depended on the chameleon_genshi module
prior to this release of repoze.bfg should work without change
after this addon is installed.

	Removed the repoze.bfg.xslt module and thus support for XSL
templates. The repoze.bfg.xslt module depended upon lxml,
which is implemented in C, and the repoze.bfg core is “C-free”
as of this release. You bay get XSL templating back by installing
the repoze.bfg.xslt package available from
http://svn.repoze.org/repoze.bfg.xslt/ (also available in the index
at http://dist.repoze.org/bfg/0.8/simple). All existing code that
depended upon the xslt module prior to this release of
repoze.bfg should work without modification after this addon is
installed.

	Removed the repoze.bfg.interfaces.INodeTemplateRenderer
interface and the an old b/w compat aliases from that interface to
repoze.bfg.interfaces.INodeTemplate. This interface must now be
imported from the repoze.bfg.xslt.interfaces package after
installation of the repoze.bfg.xslt addon package described
above as repoze.bfg.interfaces.INodeTemplateRenderer. This
interface was never part of any public API.

Other backwards incompatibilities:

	The render_template function in repoze.bfg.chameleon_zpt
returns Unicode instead of a string. Likewise, the individual
values returned by the iterable created by the
render_template_to_iterable function are also each Unicode.
This is actually a backwards incompatibility inherited from our new
use of the combination of chameleon.core 1.0b32 (the
non-lxml-depending version) and chameleon.zpt 1.0b16+ ; the
chameleon.zpt PageTemplateFile implementation used to return a
string, but now returns Unicode.

0.7.1 (2009-05-01)

Index-Related

	The canonical package index location for repoze.bfg has changed.
The “old” index (http://dist.repoze.org/lemonade/dev/simple) has
been superseded by a new index location
(http://dist.repoze.org/bfg/current/simple). The installation
documentation has been updated as well as the setup.cfg file in
this package. The “lemonade” index still exists, but it is not
guaranteed to have the latest BFG software in it, nor will it be
maintained in the future.

Features

	The “paster create” templates have been modified to use links to the
new “bfg.repoze.org” and “docs.repoze.org” websites.

	Added better documentation for virtual hosting at a URL prefix
within the virtual hosting docs chapter.

	The interface for repoze.bfg.interfaces.ITraverser and the
built-in implementations that implement the interface
(repoze.bfg.traversal.ModelGraphTraverser, and
repoze.bfg.urldispatch.RoutesModelTraverser) now expect the
__call__ method of an ITraverser to return 3 additional
arguments: traversed, virtual_root, and
virtual_root_path (the old contract was that the __call__
method of an ITraverser returned; three arguments, the contract new
is that it returns six). traversed will be a sequence of
Unicode names that were traversed (including the virtual root path,
if any) or None if no traversal was performed, virtual_root
will be a model object representing the virtual root (or the
physical root if traversal was not performed), and
virtual_root_path will be a sequence representing the virtual
root path (a sequence of Unicode names) or None if traversal was
not performed.

Six arguments are now returned from BFG ITraversers. They are
returned in this order: context, view_name, subpath,
traversed, virtual_root, and virtual_root_path.

Places in the BFG code which called an ITraverser continue to accept
a 3-argument return value, although BFG will generate and log a
warning when one is encountered.

	The request object now has the following attributes: traversed
(the sequence of names traversed or None if traversal was not
performed), virtual_root (the model object representing the
virtual root, including the virtual root path if any), and
virtual_root_path (the seuquence of names representing the
virtual root path or None if traversal was not performed).

	A new decorator named wsgiapp2 was added to the
repoze.bfg.wsgi module. This decorator performs the same
function as repoze.bfg.wsgi.wsgiapp except it fixes up the
SCRIPT_NAME, and PATH_INFO environment values before
invoking the WSGI subapplication.

	The repoze.bfg.testing.DummyRequest object now has default
attributes for traversed, virtual_root, and
virtual_root_path.

	The RoutesModelTraverser now behaves more like the Routes
“RoutesMiddleware” object when an element in the match dict is named
path_info (usually when there’s a pattern like
http://foo/*path_info). When this is the case, the
PATH_INFO environment variable is set to the value in the match
dict, and the SCRIPT_NAME is appended to with the prefix of the
original PATH_INFO not including the value of the new variable.

	The notfound debug now shows the traversed path, the virtual root,
and the virtual root path too.

	Speed up / clarify ‘traversal’ module’s ‘model_path’, ‘model_path_tuple’,
and ‘_model_path_list’ functions.

Backwards Incompatibilities

	In previous releases, the repoze.bfg.url.model_url,
repoze.bfg.traversal.model_path and
repoze.bfg.traversal.model_path_tuple functions always ignored
the __name__ argument of the root object in a model graph (
effectively replacing it with a leading / in the returned value)
when a path or URL was generated. The code required to perform this
operation was not efficient. As of this release, the root object in
a model graph must have a __name__ attribute that is either
None or the empty string ('') for URLs and paths to be
generated properly from these APIs. If your root model object has a
__name__ argument that is not one of these values, you will need
to change your code for URLs and paths to be generated properly. If
your model graph has a root node with a string __name__ that is
not null, the value of __name__ will be prepended to every path
and URL generated.

	The repoze.bfg.location.LocationProxy class and the
repoze.bfg.location.ClassAndInstanceDescr class have both been
removed in order to be able to eventually shed a dependency on
zope.proxy. Neither of these classes was ever an API.

	In all previous releases, the repoze.bfg.location.locate
function worked like so: if a model did not explicitly provide the
repoze.bfg.interfaces.ILocation interface, locate returned a
LocationProxy object representing model with its
__parent__ attribute assigned to parent and a __name__
attribute assigned to __name__. In this release, the
repoze.bfg.location.locate function simply jams the __name__
and __parent__ attributes on to the supplied model
unconditionally, no matter if the object implements ILocation or
not, and it never returns a proxy. This was done because the
LocationProxy behavior has now moved into an add-on package
(repoze.bfg.traversalwrapper), in order to eventually be able to
shed a dependency on zope.proxy.

	In all previous releases, by default, if traversal was used (as
opposed to URL-dispatch), and the root object supplied
the``repoze.bfg.interfaces.ILocation`` interface, but the children
returned via its __getitem__ returned an object that did not
implement the same interface, repoze.bfg provided some
implicit help during traversal. This traversal feature wrapped
subobjects from the root (and thereafter) that did not implement
ILocation in proxies which automatically provided them with a
__name__ and __parent__ attribute based on the name being
traversed and the previous object traversed. This feature has now
been removed from the base repoze.bfg package for purposes of
eventually shedding a dependency on zope.proxy.

In order to re-enable the wrapper behavior for older applications
which cannot be changed, register the “traversalwrapper”
ModelGraphTraverser as the traversal policy, rather than the
default ModelGraphTraverser. To use this feature, you will need
to install the repoze.bfg.traversalwrapper package (an add-on
package, available at
http://svn.repoze.org/repoze.bfg.traversalwrapper) Then change your
application’s configure.zcml to include the following stanza:

	<adapter

	factory=”repoze.bfg.traversalwrapper.ModelGraphTraverser”
provides=”repoze.bfg.interfaces.ITraverserFactory”
for=”*”
/>

When this ITraverserFactory is used instead of the default, no
object in the graph (even the root object) must supply a
__name__ or __parent__ attribute. Even if subobjects
returned from the root do implement the ILocation interface,
these will still be wrapped in proxies that override the object’s
“real” __parent__ and __name__ attributes.

See also changes to the “Models” chapter of the documentation (in
the “Location-Aware Model Instances”) section.

0.7.0 (2009-04-11)

Bug Fixes

	Fix a bug in repoze.bfg.wsgi.HTTPException: the content length
was returned as an int rather than as a string.

	Add explicit dependencies on zope.deferredimport,
zope.deprecation, and zope.proxy for forward compatibility
reasons (zope.component will stop relying on
zope.deferredimport soon and although we use it directly, it’s
only a transitive dependency, and ‘’zope.deprecation`` and
zope.proxy are used directly even though they’re only transitive
dependencies as well).

	Using model_url or model_path against a broken model graph
(one with models that had a non-root model with a __name__ of
None) caused an inscrutable error to be thrown: (if not
_must_quote[cachekey].search(s): TypeError: expected string or
buffer). Now URLs and paths generated against graphs that have
None names in intermediate nodes will replace the None with the
empty string, and, as a result, the error won’t be raised. Of
course the URL or path will still be bogus.

Features

	Make it possible to have testing.DummyTemplateRenderer return
some nondefault string representation.

	Added a new anchor keyword argument to model_url. If
anchor is present, its string representation will be used
as a named anchor in the generated URL (e.g. if anchor is
passed as foo and the model URL is
http://example.com/model/url, the generated URL will be
http://example.com/model/url#foo).

Backwards Incompatibilities

	The default request charset encoding is now utf-8. As a result,
the request machinery will attempt to decode values from the utf-8
encoding to Unicode automatically when they are obtained via
request.params, request.GET, and request.POST. The
previous behavior of BFG was to return a bytestring when a value was
accessed in this manner. This change will break form handling code
in apps that rely on values from those APIs being considered
bytestrings. If you are manually decoding values from form
submissions in your application, you’ll either need to change the
code that does that to expect Unicode values from
request.params, request.GET and request.POST, or you’ll
need to explicitly reenable the previous behavior. To reenable the
previous behavior, add the following to your application’s
configure.zcml:

<subscriber for="repoze.bfg.interfaces.INewRequest"
 handler="repoze.bfg.request.make_request_ascii"/>

See also the documentation in the “Views” chapter of the BFG docs
entitled “Using Views to Handle Form Submissions (Unicode and
Character Set Issues)”.

Documentation

	Add a section to the narrative Views chapter entitled “Using Views
to Handle Form Submissions (Unicode and Character Set Issues)”
explaining implicit decoding of form data values.

0.6.9 (2009-02-16)

Bug Fixes

	lru cache was unstable under concurrency (big surprise!) when it
tried to redelete a key in the cache that had already been deleted.
Symptom: line 64 in put:del data[oldkey]:KeyError: ‘/some/path’.
Now we just ignore the key error if we can’t delete the key (it has
already been deleted).

	Empty location names in model paths when generating a URL using
repoze.bfg.model_url based on a model obtained via traversal are
no longer ignored in the generated URL. This means that if a
non-root model object has a __name__ of '', the URL will
reflect it (e.g. model_url will generate http://foo/bar//baz
if an object with the __name__ of '' is a child of bar and
the parent of baz). URLs generated with empty path segments are,
however, still irresolveable by the model graph traverser on request
ingress (the traverser strips empty path segment names).

Features

	Microspeedups of repoze.bfg.traversal.model_path,
repoze.bfg.traversal.model_path_tuple,
repoze.bfg.traversal.quote_path_segment, and
repoze.bfg.url.urlencode.

	add zip_safe = false to setup.cfg.

Documentation

	Add a note to the repoze.bfg.traversal.quote_path_segment API
docs about caching of computed values.

Implementation Changes

	Simplification of
repoze.bfg.traversal.TraversalContextURL.__call__ (it now uses
repoze.bfg.traversal.model_path instead of rolling its own
path-generation).

0.6.8 (2009-02-05)

Backwards Incompatibilities

	The repoze.bfg.traversal.model_path API now returns a quoted
string rather than a string represented by series of unquoted
elements joined via / characters. Previously it returned a
string or unicode object representing the model path, with each
segment name in the path joined together via / characters,
e.g. /foo /bar. Now it returns a string, where each segment is
a UTF-8 encoded and URL-quoted element e.g. /foo%20/bar. This
change was (as discussed briefly on the repoze-dev maillist)
necessary to accomodate model objects which themselves have
__name__ attributes that contain the / character.

For people that have no models that have high-order Unicode
__name__ attributes or __name__ attributes with values that
require URL-quoting with in their model graphs, this won’t cause any
issue. However, if you have code that currently expects
model_path to return an unquoted string, or you have an existing
application with data generated via the old method, and you’re too
lazy to change anything, you may wish replace the BFG-imported
model_path in your code with this function (this is the code of
the “old” model_path implementation):

from repoze.bfg.location import lineage

def i_am_too_lazy_to_move_to_the_new_model_path(model, *elements):
 rpath = []
 for location in lineage(model):
 if location.__name__:
 rpath.append(location.__name__)
 path = '/' + '/'.join(reversed(rpath))
 if elements:
 suffix = '/'.join(elements)
 path = '/'.join([path, suffix])
 return path

	The repoze.bfg.traversal.find_model API no longer implicitly
converts unicode representations of a full path passed to it as a
Unicode object into a UTF-8 string. Callers should either use
prequoted path strings returned by
repoze.bfg.traversal.model_path, or tuple values returned by the
result of repoze.bfg.traversal.model_path_tuple or they should
use the guidelines about passing a string path argument
described in the find_model API documentation.

Bugfixes

	Each argument contained in elements passed to
repoze.bfg.traversal.model_path will now have any /
characters contained within quoted to %2F in the returned
string. Previously, / characters in elements were left unquoted
(a bug).

Features

	A repoze.bfg.traversal.model_path_tuple API was added. This API
is an alternative to model_path (which returns a string);
model_path_tuple returns a model path as a tuple (much like
Zope’s getPhysicalPath).

	A repoze.bfg.traversal.quote_path_segment API was added. This
API will quote an individual path segment (string or unicode
object). See the repoze.bfg.traversal API documentation for
more information.

	The repoze.bfg.traversal.find_model API now accepts “path
tuples” (see the above note regarding model_path_tuple) as well
as string path representations (from
repoze.bfg.traversal.model_path) as a path argument.

	Add ` renderer` argument (defaulting to None) to
repoze.bfg.testing.registerDummyRenderer. This makes it
possible, for instance, to register a custom renderer that raises an
exception in a unit test.

Implementation Changes

	Moved _url_quote function back to repoze.bfg.traversal from
repoze.bfg.url. This is not an API.

0.6.7 (2009-01-27)

Features

	The repoze.bfg.url.model_url API now works against contexts
derived from Routes URL dispatch (Routes.util.url_for is called
under the hood).

	“Virtual root” support for traversal-based applications has been
added. Virtual root support is useful when you’d like to host some
model in a repoze.bfg model graph as an application under a
URL pathname that does not include the model path itself. For more
information, see the (new) “Virtual Hosting” chapter in the
documentation.

	A repoze.bfg.traversal.virtual_root API has been added. When
called, it returns the virtual root object (or the physical root
object if no virtual root has been specified).

Implementation Changes

	repoze.bfg.traversal.RoutesModelTraverser has been moved to
repoze.bfg.urldispatch.

	model_url URL generation is now performed via an adapter lookup
based on the context and the request.

	ZCML which registers two adapters for the IContextURL interface
has been added to the configure.zcml in repoze.bfg.includes.

0.6.6 (2009-01-26)

Implementation Changes

	There is an indirection in repoze.bfg.url.model_url now that
consults a utility to generate the base model url (without extra
elements or a query string). Eventually this will service virtual
hosting; for now it’s undocumented and should not be hooked.

0.6.5 (2009-01-26)

Features

	You can now override the NotFound and Unauthorized responses that
repoze.bfg generates when a view cannot be found or cannot be
invoked due to lack of permission. See the “ZCML Hooks” chapter in
the docs for more information.

	Added Routes ZCML directive attribute explanations in documentation.

	Added a traversal_path API to the traversal module; see the
“traversal” API chapter in the docs. This was a function previously
known as split_path that was not an API but people were using it
anyway. Unlike split_path, it now returns a tuple instead of a
list (as its values are cached).

Behavior Changes

	The repoze.bfg.view.render_view_to_response API will no longer
raise a ValueError if an object returned by a view function it calls
does not possess certain attributes (headerlist, app_iter,
status). This API used to attempt to perform a check using the
is_response function in repoze.bfg.view, and raised a
ValueError if the is_response check failed. The
responsibility is now the caller’s to ensure that the return value
from a view function is a “real” response.

	WSGI environ dicts passed to repoze.bfg ‘s Router must now
contain a REQUEST_METHOD key/value; if they do not, a KeyError will
be raised (speed).

	It is no longer permissible to pass a “nested” list of principals to
repoze.bfg.ACLAuthorizer.permits (e.g. ['fred', ['larry',
'bob']]). The principals list must be fully expanded. This
feature was never documented, and was never an API, so it’s not a
backwards incompatibility.

	It is no longer permissible for a security ACE to contain a “nested”
list of permissions (e.g. (Allow, Everyone, ['read', ['view',
['write', 'manage']]])`)`. The list must instead be fully expanded
(e.g. ``(Allow, Everyone, ['read', 'view', 'write', 'manage])). This
feature was never documented, and was never an API, so it’s not a
backwards incompatibility.

	The repoze.bfg.urldispatch.RoutesRootFactory now injects the
wsgiorg.routing_args environment variable into the environ when
a route matches. This is a tuple of ((), routing_args) where
routing_args is the value that comes back from the routes mapper
match (the “match dict”).

	The repoze.bfg.traversal.RoutesModelTraverser class now wants to
obtain the view_name and subpath from the
wsgiorgs.routing_args environment variable. It falls back to
obtaining these from the context for backwards compatibility.

Implementation Changes

	Get rid of repoze.bfg.security.ACLAuthorizer: the
ACLSecurityPolicy now does what it did inline.

	Get rid of repoze.bfg.interfaces.NoAuthorizationInformation
exception: it was used only by ACLAuthorizer.

	Use a homegrown NotFound error instead of webob.exc.HTTPNotFound
(the latter is slow).

	Use a homegrown Unauthorized error instead of
webob.exc.Unauthorized (the latter is slow).

	the repoze.bfg.lru.lru_cached decorator now uses functools.wraps
in order to make documentation of LRU-cached functions possible.

	Various speed micro-tweaks.

Bug Fixes

	repoze.bfg.testing.DummyModel did not have a get method;
it now does.

0.6.4 (2009-01-23)

Backwards Incompatibilities

	The unicode_path_segments configuration variable and the
BFG_UNICODE_PATH_SEGMENTS configuration variable have been
removed. Path segments are now always passed to model
__getitem__ methods as unicode. “True” has been the default for
this setting since 0.5.4, but changing this configuration setting to
false allowed you to go back to passing raw path element strings to
model __getitem__ methods. Removal of this knob services a
speed goal (we get about +80 req/s by removing the check), and it’s
clearer just to always expect unicode path segments in model
__getitem__ methods.

Implementation Changes

	repoze.bfg.traversal.split_path now also handles decoding
path segments to unicode (for speed, because its results are
cached).

	
	repoze.bfg.traversal.step was made a method of the

	ModelGraphTraverser.

	Use “precooked” Request subclasses
(e.g. repoze.bfg.request.GETRequest) that correspond to HTTP
request methods within router.py when constructing a request
object rather than using alsoProvides to attach the proper
interface to an unsubclassed webob.Request. This pattern is
purely an optimization (e.g. preventing calls to alsoProvides
means the difference between 590 r/s and 690 r/s on a MacBook 2GHz).

	Tease out an extra 4% performance boost by changing the Router;
instead of using imported ZCA APIs, use the same APIs directly
against the registry that is an attribute of the Router.

	The registry used by BFG is now a subclass of
zope.component.registry.Components (defined as
repoze.bfg.registry.Registry); it has a notify method, a
registerSubscriptionAdapter and a registerHandler method.
If no subscribers are registered via registerHandler or
registerSubscriptionAdapter, notify is a noop for speed.

	The Allowed and Denied classes in repoze.bfg.security now are
lazier about constructing the representation of a reason message for
speed; repoze.bfg.view_execution_permitted takes advantage of
this.

	The is_response check was sped up by about half at the expense
of making its code slightly uglier.

New Modules

	repoze.bfg.lru implements an LRU cache class and a decorator for
internal use.

0.6.3 (2009-01-19)

Bug Fixes

	Readd root_policy attribute on Router object (as a property
which returns the IRootFactory utility). It was inadvertently
removed in 0.6.2. Code in the wild depended upon its presence
(esp. scripts and “debug” helpers).

Features

	URL-dispatch has been overhauled: it is no longer necessary to
manually create a RoutesMapper in your application’s entry point
callable in order to use URL-dispatch (aka Routes [http://routes.groovie.org]). A new route directive has been
added to the available list of ZCML directives. Each route
directive inserted into your application’s configure.zcml
establishes a Routes mapper connection. If any route
declarations are made via ZCML within a particular application, the
get_root callable passed in to repoze.bfg.router.make_app
will automatically be wrapped in the equivalent of a RoutesMapper.
Additionally, the new route directive allows the specification
of a context_interfaces attribute for a route, this will be used
to tag the manufactured routes context with specific interfaces when
a route specifying a context_interfaces attribute is matched.

	A new interface repoze.bfg.interfaces.IContextNotFound was
added. This interface is attached to a “dummy” context generated
when Routes cannot find a match and there is no “fallback” get_root
callable that uses traversal.

	The bfg_starter and bfg_zodb “paster create” templates now
contain images and CSS which are displayed when the default page is
displayed after initial project generation.

	Allow the repoze.bfg.view.static helper to be passed a relative
root_path name; it will be considered relative to the file in
which it was called.

	The functionality of repoze.bfg.convention has been merged into
the core. Applications which make use of repoze.bfg.convention
will continue to work indefinitely, but it is recommended that apps
stop depending upon it. To do so, substitute imports of
repoze.bfg.convention.bfg_view with imports of
repoze.bfg.view.bfg_view, and change the stanza in ZCML from
<convention package="."> to <scan package=".">. As a result
of the merge, bfg has grown a new dependency: martian.

	View functions which use the pushpage decorator are now pickleable
(meaning their use won’t prevent a configure.zcml.cache file
from being written to disk).

	Instead of invariably using webob.Request as the “request
factory” (e.g. in the Router class) and webob.Response and
the “response factory” (e.g. in render_template_to_response),
allow both to be overridden via a ZCML utility hook. See the “Using
ZCML Hooks” chapter of the documentation for more information.

Deprecations

	The class repoze.bfg.urldispatch.RoutesContext has been renamed
to repoze.bfg.urldispatch.DefaultRoutesContext. The class
should be imported by the new name as necessary (although in reality
it probably shouldn’t be imported from anywhere except internally
within BFG, as it’s not part of the API).

Implementation Changes

	The repoze.bfg.wsgi.wsgiapp decorator now uses
webob.Request.get_response to do its work rather than relying on
homegrown WSGI code.

	The repoze.bfg.view.static helper now uses
webob.Request.get_response to do its work rather than relying on
homegrown WSGI code.

	The repoze.bfg.urldispatch.RoutesModelTraverser class has been
moved to repoze.bfg.traversal.RoutesModelTraverser.

	The repoze.bfg.registry.makeRegistry function was renamed to
repoze.bfg.registry.populateRegistry and now accepts a
registry argument (which should be an instance of
zope.component.registry.Components).

Documentation Additions

	Updated narrative urldispatch chapter with changes required by
<route..> ZCML directive.

	Add a section on “Using BFG Security With URL Dispatch” into the
urldispatch chapter of the documentation.

	Better documentation of security policy implementations that ship
with repoze.bfg.

	Added a “Using ZPT Macros in repoze.bfg” section to the narrative
templating chapter.

0.6.2 (2009-01-13)

Features

	Tests can be run with coverage output if you’ve got nose
installed in the interpreter which you use to run tests. Using an
interpreter with nose installed, do python setup.py
nosetests within a checkout of the repoze.bfg package to see
test coverage output.

	Added a post argument to the repoze.bfg.testing:DummyRequest
constructor.

	Added __len__ and __nonzero__ to repoze.bfg.testing:DummyModel.

	The repoze.bfg.registry.get_options callable (now renamed to
repoze.bfg.setings.get_options) used to return only
framework-specific keys and values in the dictionary it returned.
It now returns all the keys and values in the dictionary it is
passed plus any framework-specific settings culled from the
environment. As a side effect, all PasteDeploy application-specific
config file settings are made available as attributes of the
ISettings utility from within BFG.

	Renamed the existing BFG paster template to bfg_starter. Added
another template (bfg_zodb) showing default ZODB setup using
repoze.zodbconn.

	Add a method named assert_ to the DummyTemplateRenderer. This
method accepts keyword arguments. Each key/value pair in the
keyword arguments causes an assertion to be made that the renderer
received this key with a value equal to the asserted value.

	Projects generated by the paster templates now use the
DummyTemplateRenderer.assert_ method in their view tests.

	Make the (internal) thread local registry manager maintain a stack
of registries in order to make it possible to call one BFG
application from inside another.

	An interface specific to the HTTP verb (GET/PUT/POST/DELETE/HEAD) is
attached to each request object on ingress. The HTTP-verb-related
interfaces are defined in repoze.bfg.interfaces and are
IGETRequest, IPOSTRequest, IPUTRequest,
IDELETERequest and IHEADRequest. These interfaces can be
specified as the request_type attribute of a bfg view
declaration. A view naming a specific HTTP-verb-matching interface
will be found only if the view is defined with a request_type that
matches the HTTP verb in the incoming request. The more general
IRequest interface can be used as the request_type to catch all
requests (and this is indeed the default). All requests implement
IRequest. The HTTP-verb-matching idea was pioneered by
repoze.bfg.restrequest [http://pypi.python.org/pypi/repoze.bfg.restrequest/1.0.1] . That
package is no longer required, but still functions fine.

Bug Fixes

	Fix a bug where the Paste configuration’s unicode_path_segments
(and os.environ’s BFG_UNICODE_PATH_SEGMENTS) may have been
defaulting to false in some circumstances. It now always defaults
to true, matching the documentation and intent.

	The repoze.bfg.traversal.find_model API did not work properly
when passed a path argument which was unicode and contained
high-order bytes when the unicode_path_segments or
BFG_UNICODE_PATH_SEGMENTS configuration variables were “true”.

	A new module was added: repoze.bfg.settings. This contains
deployment-settings-related code.

Implementation Changes

	The make_app callable within repoze.bfg.router now registers
the root_policy argument as a utility (unnamed, using the new
repoze.bfg.interfaces.IRootFactory as a provides interface)
rather than passing it as the first argument to the
repoze.bfg.router.Router class. As a result, the
repoze.bfg.router.Router router class only accepts a single
argument: registry. The repoze.bfg.router.Router class
retrieves the root policy via a utility lookup now. The
repoze.bfg.router.make_app API also now performs some important
application registrations that were previously handled inside
repoze.bfg.registry.makeRegistry.

New Modules

	A repoze.bfg.settings module was added. It contains code
related to deployment settings. Most of the code it contains was
moved to it from the repoze.bfg.registry module.

Behavior Changes

	The repoze.bfg.settings.Settings class (an instance of which is
registered as a utility providing
repoze.bfg.interfaces.ISettings when any application is started)
now automatically calls repoze.bfg.settings.get_options on the
options passed to its constructor. This means that usage of
get_options within an application’s make_app function is no
longer required (the “raw” options dict or None may be passed).

	Remove old cold which attempts to recover from trying to unpickle a
z3c.pt template; Chameleon has been the templating engine for a
good long time now. Running repoze.bfg against a sandbox that has
pickled z3c.pt templates it will now just fail with an
unpickling error, but can be fixed by deleting the template cache
files.

Deprecations

	Moved the repoze.bfg.registry.Settings class. This has been
moved to repoze.bfg.settings.Settings. A deprecation warning is
issued when it is imported from the older location.

	Moved the repoze.bfg.registry.get_options function This has been
moved to repoze.bfg.settings.get_options. A deprecation warning
is issued when it is imported from the older location.

	The repoze.bfg.interfaces.IRootPolicy interface was renamed
within the interfaces package. It has been renamed to
IRootFactory. A deprecation warning is issued when it is
imported from the older location.

0.6.1 (2009-01-06)

New Modules

	A new module repoze.bfg.url has been added. It contains the
model_url API (moved from repoze.bfg.traversal) and an
implementation of urlencode (like Python’s
urllib.urlencode) which can handle Unicode keys and values in
parameters to the query argument.

Deprecations

	The model_url function has been moved from
repoze.bfg.traversal into repoze.bfg.url. It can still
be imported from repoze.bfg.traversal but an import from
repoze.bfg.traversal will emit a DeprecationWarning.

Features

	A static helper class was added to the repoze.bfg.views
module. Instances of this class are willing to act as BFG views
which return static resources using files on disk. See the
repoze.bfg.view docs for more info.

	The repoze.bfg.url.model_url API (nee’
repoze.bfg.traversal.model_url) now accepts and honors a
keyword argument named query. The value of this argument
will be used to compose a query string, which will be attached to
the generated URL before it is returned. See the API docs (in
the docs directory or on the web [http://static.repoze.org/bfgdocs]) for more information.

0.6 (2008-12-26)

Backwards Incompatibilities

	Rather than prepare the “stock” implementations of the ZCML directives
from the zope.configuration package for use under repoze.bfg,
repoze.bfg now makes available the implementations of directives
from the repoze.zcml package (see http://static.repoze.org/zcmldocs).
As a result, the repoze.bfg package now depends on the
repoze.zcml package, and no longer depends directly on the
zope.component, zope.configuration, zope.interface, or
zope.proxy packages.

The primary reason for this change is to enable us to eventually reduce
the number of inappropriate repoze.bfg Zope package dependencies,
as well as to shed features of dependent package directives that don’t
make sense for repoze.bfg.

Note that currently the set of requirements necessary to use bfg has not
changed. This is due to inappropriate Zope package requirements in
chameleon.zpt, which will hopefully be remedied soon. NOTE: in
lemonade index a 1.0b8-repozezcml0 package exists which does away with
these requirements.

	BFG applications written prior to this release which expect the “stock”
zope.component ZCML directive implementations (e.g. adapter,
subscriber, or utility) to function now must either 1) include
the meta.zcml file from zope.component manually (e.g. <include
package="zope.component" file="meta.zcml">) and include the
zope.security package as an install_requires dependency or 2)
change the ZCML in their applications to use the declarations from
repoze.zcml [http://static.repoze.org/zcmldocs/] instead of the stock
declarations. repoze.zcml only makes available the adapter,
subscriber and utility directives.

In short, if you’ve got an existing BFG application, after this
update, if your application won’t start due to an import error for
“zope.security”, the fastest way to get it working again is to add
zope.security to the “install_requires” of your BFG
application’s setup.py, then add the following ZCML anywhere
in your application’s configure.zcml:

<include package="zope.component" file="meta.zcml">

Then re-setup.py develop or reinstall your application.

	The http://namespaces.repoze.org/bfg XML namespace is now the default
XML namespace in ZCML for paster-generated applications. The docs have
been updated to reflect this.

	The copies of BFG’s meta.zcml and configure.zcml were removed
from the root of the repoze.bfg package. In 0.3.6, a new package
named repoze.bfg.includes was added, which contains the “correct”
copies of these ZCML files; the ones that were removed were for backwards
compatibility purposes.

	The BFG view ZCML directive no longer calls
zope.component.interface.provideInterface for the for interface.
We don’t support provideInterface in BFG because it mutates the
global registry.

Other

	The minimum requirement for chameleon.core is now 1.0b13. The
minimum requirement for chameleon.zpt is now 1.0b8. The minimum
requirement for chameleon.genshi is now 1.0b2.

	Updated paster template “ez_setup.py” to one that requires setuptools
0.6c9.

	Turn view_execution_permitted from the repoze.bfg.view module
into a documented API.

	Doc cleanups.

	Documented how to create a view capable of serving static resources.

0.5.6 (2008-12-18)

	Speed up traversal.model_url execution by using a custom url quoting
function instead of Python’s urllib.quote, by caching URL path
segment quoting and encoding results, by disusing Python’s
urlparse.urljoin in favor of a simple string concatenation, and by
using ob.__class__ is unicode rather than isinstance(ob, unicode)
in one strategic place.

0.5.5 (2008-12-17)

Backwards Incompatibilities

	In the past, during traversal, the ModelGraphTraverser (the default
traverser) always passed each URL path segment to any __getitem__
method of a model object as a byte string (a str object). Now, by
default the ModelGraphTraverser attempts to decode the path segment to
Unicode (a unicode object) using the UTF-8 encoding before passing it
to the __getitem__ method of a model object. This makes it possible
for model objects to be dumber in __getitem__ when trying to resolve
a subobject, as model objects themselves no longer need to try to divine
whether or not to try to decode the path segment passed by the
traverser.

Note that since 0.5.4, URLs generated by repoze.bfg’s model_url API
will contain UTF-8 encoded path segments as necessary, so any URL
generated by BFG itself will be decodeable by the traverser. If another
application generates URLs to a BFG application, to be resolved
successully, it should generate the URL with UTF-8 encoded path segments
to be successfully resolved. The decoder is not at all magical: if a
non-UTF-8-decodeable path segment (e.g. one encoded using UTF-16 or some
other insanity) is passed in the URL, BFG will raise a TypeError with
a message indicating it could not decode the path segment.

To turn on the older behavior, where path segments were not decoded to
Unicode before being passed to model object __getitem__ by the
traverser, and were passed as a raw byte string, set the
unicode_path_segments configuration setting to a false value in your
BFG application’s section of the paste .ini file, for example:

unicode_path_segments = False

Or start the application using the BFG_UNICODE_PATH_SEGMENT envvar
set to a false value:

BFG_UNICODE_PATH_SEGMENTS=0

0.5.4 (2008-12-13)

Backwards Incompatibilities

	URL-quote “extra” element names passed in as **elements to the
traversal.model_url API. If any of these names is a Unicode string,
encode it to UTF-8 before URL-quoting. This is a slight backwards
incompatibility that will impact you if you were already UTF-8 encoding
or URL-quoting the values you passed in as elements to this API.

Bugfixes

	UTF-8 encode each segment in the model path used to generate a URL before
url-quoting it within the traversal.model_url API. This is a bugfix,
as Unicode cannot always be successfully URL-quoted.

Features

	Make it possible to run unit tests using a buildout-generated Python
“interpreter”.

	Add request.root to router.Router in order to have easy access to
the application root.

0.5.3 (2008-12-07)

	Remove the ITestingTemplateRenderer interface. When
testing.registerDummyRenderer is used, it instead registers a dummy
implementation using ITemplateRenderer interface, which is checked
for when the built-in templating facilities do rendering. This change
also allows developers to make explcit named utility registrations in
the ZCML registry against ITemplateRenderer; these will be found
before any on-disk template is looked up.

0.5.2 (2008-12-05)

	The component registration handler for views (functions or class
instances) now observes component adaptation annotations (see
zope.component.adaptedBy) and uses them before the fallback values
for for_ and request_type. This change does not affect existing
code insomuch as the code does not rely on these defaults when an
annotation is set on the view (unlikely). This means that for a
new-style class you can do zope.component.adapts(ISomeContext,
ISomeRequest) at class scope or at module scope as a decorator to a
bfg view function you can do @zope.component.adapter(ISomeContext,
ISomeRequest). This differs from r.bfg.convention inasmuch as you
still need to put something in ZCML for the registrations to get done;
it’s only the defaults that will change if these declarations exist.

	Strip all slashes from end and beginning of path in clean_path within
traversal machinery.

0.5.1 (2008-11-25)

	Add keys, items, and values methods to
testing.DummyModel.

	Add __delitem__ method to testing.DummyModel.

0.5.0 (2008-11-18)

	Fix ModelGraphTraverser; don’t try to change the __name__ or
__parent__ of an object that claims it implements ILocation during
traversal even if the __name__ or __parent__ of the object
traversed does not match the name used in the traversal step or the or
the traversal parent . Rationale: it was insane to do so. This bug was
only found due to a misconfiguration in an application that mistakenly
had intermediate persistent non-ILocation objects; traversal was causing
a persistent write on every request under this setup.

	repoze.bfg.location.locate now unconditionally sets __name__ and
__parent__ on objects which provide ILocation (it previously only set
them conditionally if they didn’t match attributes already present on the
object via equality).

0.4.9 (2008-11-17)

	Add chameleon text template API (chameleon ${name} renderings where the
template does not need to be wrapped in any containing XML).

	Change docs to explain install in terms of a virtualenv
(unconditionally).

	Make pushpage decorator compatible with repoze.bfg.convention’s
bfg_view decorator when they’re stacked.

	Add content_length attribute to testing.DummyRequest.

	Change paster template tests.py to include a true unit test. Retain
old test as an integration test. Update documentation.

	Document view registrations against classes and repoze.bfg.convention
in context.

	Change the default paster template to register its single view against a
class rather than an interface.

	Document adding a request type interface to the request via a subscriber
function in the events narrative documentation.

0.4.8 (2008-11-12)

Backwards Incompatibilities

	repoze.bfg.traversal.model_url now always appends a slash to all
generated URLs unless further elements are passed in as the third and
following arguments. Rationale: views often use model_url without
the third-and-following arguments in order to generate a URL for a model
in order to point at the default view of a model. The URL that points to
the default view of the root model is technically http://mysite/ as
opposed to http://mysite (browsers happen to ask for ‘/’ implicitly
in the GET request). Because URLs are never automatically generated for
anything except models by model_url, and because the root model is
not really special, we continue this pattern. The impact of this change
is minimal (at most you will have too many slashes in your URL, which BFG
deals with gracefully anyway).

0.4.7 (2008-11-11)

Features

	Allow testing.registerEventListener to be used with Zope 3 style
“object events” (subscribers accept more than a single event argument).
We extend the list with the arguments, rather than append.

0.4.6 (2008-11-10)

Bug Fixes

	The model_path and model_url traversal APIs returned the wrong
value for the root object (e.g. model_path returned '' for the
root object, while it should have been returning '/').

0.4.5 (2008-11-09)

Features

	Added a clone method and a __contains__ method to the DummyModel
testing object.

	Allow DummyModel objects to receive extra keyword arguments, which will
be attached as attributes.

	The DummyTemplateRenderer now returns self as its implementation.

0.4.4 (2008-11-08)

Features

	Added a repoze.bfg.testing module to attempt to make it slightly
easier to write unittest-based automated tests of BFG applications.
Information about this module is in the documentation.

	The default template renderer now supports testing better by looking for
ITestingTemplateRenderer using a relative pathname. This is exposed
indirectly through the API named registerTemplateRenderer in
repoze.bfg.testing.

Deprecations

	The names repoze.bfg.interfaces.ITemplate ,
repoze.bfg.interfaces.ITemplateFactory and
repoze.bfg.interfaces.INodeTemplate have been deprecated. These
should now be imported as repoze.bfg.interfaces.ITemplateRenderer and
repoze.bfg.interfaces.ITemplateRendererFactory, and
INodeTemplateRenderer respectively.

	The name repoze.bfg.chameleon_zpt.ZPTTemplateFactory is deprecated.
Use repoze.bfg.chameleon_zpt.ZPTTemplateRenderer.

	The name repoze.bfg.chameleon_genshi.GenshiTemplateFactory is
deprecated. Use repoze.bfg.chameleon_genshi.GenshiTemplateRenderer.

	The name repoze.bfg.xslt.XSLTemplateFactory is deprecated. Use
repoze.bfg.xslt.XSLTemplateRenderer.

0.4.3 (2008-11-02)

Bug Fixes

	Not passing the result of “get_options” as the second argument of
make_app could cause attribute errors when attempting to look up settings
against the ISettings object (internal). Fixed by giving the Settings
objects defaults for debug_authorization and debug_notfound.

	Return an instance of Allowed (rather than True) from
has_permission when no security policy is in use.

	Fix bug where default deny in authorization check would throw a TypeError
(use ACLDenied instead of Denied).

0.4.2 (2008-11-02)

Features

	Expose a single ILogger named “repoze.bfg.debug” as a utility; this
logger is registered unconditionally and is used by the authorization
debug machinery. Applications may also make use of it as necessary
rather than inventing their own logger, for convenience.

	The BFG_DEBUG_AUTHORIZATION envvar and the debug_authorization
config file value now only imply debugging of view-invoked security
checks. Previously, information was printed for every call to
has_permission as well, which made output confusing. To debug
has_permission checks and other manual permission checks, use the
debugger and print statements in your own code.

	Authorization debugging info is now only present in the HTTP response
body oif debug_authorization is true.

	The format of authorization debug messages was improved.

	A new BFG_DEBUG_NOTFOUND envvar was added and a symmetric
debug_notfound config file value was added. When either is true, and
a NotFound response is returned by the BFG router (because a view could
not be found), debugging information is printed to stderr. When this
value is set true, the body of HTTPNotFound responses will also contain
the same debugging information.

	Allowed and Denied responses from the security machinery are now
specialized into two types: ACL types, and non-ACL types. The
ACL-related responses are instances of repoze.bfg.security.ACLAllowed
and repoze.bfg.security.ACLDenied. The non-ACL-related responses are
repoze.bfg.security.Allowed and repoze.bfg.security.Denied. The
allowed-type responses continue to evaluate equal to things that
themselves evaluate equal to the True boolean, while the denied-type
responses continue to evaluate equal to things that themselves evaluate
equal to the False boolean. The only difference between the two
types is the information attached to them for debugging purposes.

	Added a new BFG_DEBUG_ALL envvar and a symmetric debug_all config
file value. When either is true, all other debug-related flags are set
true unconditionally (e.g. debug_notfound and
debug_authorization).

Documentation

	Added info about debug flag changes.

	Added a section to the security chapter named “Debugging Imperative
Authorization Failures” (for e.g. has_permssion).

Bug Fixes

	Change default paster template generator to use Paste#http server
rather than PasteScript#cherrpy server. The cherrypy server has a
security risk in it when REMOTE_USER is trusted by the downstream
application.

0.4.1 (2008-10-28)

Bug Fixes

	If the render_view_to_response function was called, if the view was
found and called, but it returned something that did not implement
IResponse, the error would pass by unflagged. This was noticed when I
created a view function that essentially returned None, but received a
NotFound error rather than a ValueError when the view was rendered. This
was fixed.

0.4.0 (2008-10-03)

Docs

	An “Environment and Configuration” chapter was added to the narrative
portion of the documentation.

Features

	Ensure bfg doesn’t generate warnings when running under Python
2.6.

	The environment variable BFG_RELOAD_TEMPLATES is now available
(serves the same purpose as reload_templates in the config file).

	A new configuration file option debug_authorization was added.
This turns on printing of security authorization debug statements
to sys.stderr. The BFG_DEBUG_AUTHORIZATION environment
variable was also added; this performs the same duty.

Bug Fixes

	The environment variable BFG_SECURITY_DEBUG did not always work.
It has been renamed to BFG_DEBUG_AUTHORIZATION and fixed.

Deprecations

	A deprecation warning is now issued when old API names from the
repoze.bfg.templates module are imported.

Backwards incompatibilities

	The BFG_SECURITY_DEBUG environment variable was renamed to
BFG_DEBUG_AUTHORIZATION.

0.3.9 (2008-08-27)

Features

	A repoze.bfg.location API module was added.

Backwards incompatibilities

	Applications must now use the repoze.bfg.interfaces.ILocation
interface rather than zope.location.interfaces.ILocation to
represent that a model object is “location-aware”. We’ve removed
a dependency on zope.location for cleanliness purposes: as
new versions of zope libraries are released which have improved
dependency information, getting rid of our dependence on
zope.location will prevent a newly installed repoze.bfg
application from requiring the zope.security, egg, which not
truly used at all in a “stock” repoze.bfg setup. These
dependencies are still required by the stack at this time; this
is purely a futureproofing move.

The security and model documentation for previous versions of
repoze.bfg recommended using the
zope.location.interfaces.ILocation interface to represent
that a model object is “location-aware”. This documentation has
been changed to reflect that this interface should now be
imported from repoze.bfg.interfaces.ILocation instead.

0.3.8 (2008-08-26)

Docs

	Documented URL dispatch better in narrative form.

Bug fixes

	Routes URL dispatch did not have access to the WSGI environment,
so conditions such as method=GET did not work.

Features

	Add principals_allowed_by_permission API to security module.

	Replace z3c.pt support with support for chameleon.zpt.
Chameleon is the new name for the package that used to be named
z3c.pt. NOTE: If you update a repoze.bfg SVN checkout
that you’re using for development, you will need to run “setup.py
install” or “setup.py develop” again in order to obtain the
proper Chameleon packages. z3c.pt is no longer supported by
repoze.bfg. All API functions that used to render z3c.pt
templates will work fine with the new packages, and your
templates should render almost identically.

	Add a repoze.bfg.chameleon_zpt module. This module provides
Chameleon ZPT support.

	Add a repoze.bfg.xslt module. This module provides XSLT
support.

	Add a repoze.bfg.chameleon_genshi module. This provides
direct Genshi support, which did not exist previously.

Deprecations

	Importing API functions directly from repoze.bfg.template is
now deprecated. The get_template, render_template,
render_template_to_response functions should now be imported
from repoze.chameleon_zpt. The render_transform, and
render_transform_to_response functions should now be imported
from repoze.bfg.xslt. The repoze.bfg.template module
will remain around “forever” to support backwards compatibility.

0.3.7 (2008-09-09)

Features

	Add compatibility with z3c.pt 1.0a7+ (z3c.pt became a namespace package).

Bug fixes

	repoze.bfg.traversal.find_model function did not function properly.

0.3.6 (2008-09-04)

Features

	Add startup process docs.

	Allow configuration cache to be bypassed by actions which include special
“uncacheable” discriminators (for actions that have variable results).

Bug Fixes

	Move core repoze.bfg ZCML into a repoze.bfg.includes package so we
can use repoze.bfg better as a namespace package. Adjust the code
generator to use it. We’ve left around the configure.zcml in the
repoze.bfg package directly so as not to break older apps.

	When a zcml application registry cache was unpickled, and it contained a
reference to an object that no longer existed (such as a view), bfg would
not start properly.

0.3.5 (2008-09-01)

Features

	Event notification is issued after application is created and configured
(IWSGIApplicationCreatedEvent).

	New API module: repoze.bfg.view. This module contains the functions
named render_view_to_response, render_view_to_iterable,
render_view and is_response, which are documented in the API
docs. These features aid programmatic (non-server-driven) view
execution.

0.3.4 (2008-08-28)

Backwards incompatibilities

	Make repoze.bfg a namespace package so we can allow folks to create
subpackages (e.g. repoze.bfg.otherthing) within separate eggs. This
is a backwards incompatible change which makes it impossible to import
“make_app” and “get_options” from the repoze.bfg module directly.
This change will break all existing apps generated by the paster code
generator. Instead, you need to import these functions as
repoze.bfg.router:make_app and repoze.bfg.registry:get_options,
respectively. Sorry folks, it has to be done now or never, and
definitely better now.

Features

	Add model_path API function to traversal module.

Bugfixes

	Normalize path returned by repoze.bfg.caller_path.

0.3.3 (2008-08-23)

	Fix generated test.py module to use project name rather than package
name.

0.3.2 (2008-08-23)

	Remove sampleapp sample application from bfg package itself.

	Remove dependency on FormEncode (only needed by sampleapp).

	Fix paster template generation so that case-sensitivity is preserved for
project vs. package name.

	Depend on z3c.pt version 1.0a1 (which requires the [lxml] extra
currently).

	Read and write a pickled ZCML actions list, stored as
configure.zcml.cache next to the applications’s “normal”
configuration file. A given bfg app will usually start faster if it’s
able to read the pickle data. It fails gracefully to reading the real
ZCML file if it cannot read the pickle.

0.3.1 (2008-08-20)

	Generated application differences: make_app entry point renamed to
app in order to have a different name than the bfg function of the
same name, to prevent confusion.

	Add “options” processing to bfg’s make_app to support runtime
options. A new API function named get_options was added to the
registry module. This function is typically used in an application’s
app entry point. The Paste config file section for the app can now
supply the reload_templates option, which, if true, will prevent the
need to restart the appserver in order for z3c.pt or XSLT template
changes to be detected.

	Use only the module name in generated project’s “test_suite” (run all
tests found in the package).

	Default port for generated apps changed from 5432 to 6543 (Postgres
default port is 6543).

0.3.0 (2008-08-16)

	Add get_template API to template module.

0.2.9 (2008-08-11)

	0.2.8 was “brown bag” release. It didn’t work at all. Symptom:
ComponentLookupError when trying to render a page.

0.2.8 (2008-08-11)

	Add find_model and find_root traversal APIs. In the process,
make ITraverser a uni-adapter (on context) rather than a multiadapter (on
context and request).

0.2.7 (2008-08-05)

	Add a request_type attribute to the available attributes of a
bfg:view configure.zcml element. This attribute will have a value
which is a dotted Python path, pointing at an interface. If the request
object implements this interface when the view lookup is performed, the
appropriate view will be called. This is meant to allow for simple
“skinning” of sites based on request type. An event subscriber should
attach the interface to the request on ingress to support skins.

	Remove “template only” views. These were just confusing and were never
documented.

	Small url dispatch overhaul: the connect method of the
urldispatch.RoutesMapper object now accepts a keyword parameter named
context_factory. If this parameter is supplied, it must be a
callable which returns an instance. This instance is used as the context
for the request when a route is matched.

	The registration of a RoutesModelTraverser no longer needs to be
performed by the application; it’s in the bfg ZCML now.

0.2.6 (2008-07-31)

	Add event sends for INewRequest and INewResponse. See the events.rst
chapter in the documentation’s api directory.

0.2.5 (2008-07-28)

	Add model_url API.

0.2.4 (2008-07-27)

	Added url-based dispatch.

0.2.3 (2008-07-20)

	Add API functions for authenticated_userid and effective_principals.

0.2.2 (2008-07-20)

	Add authenticated_userid and effective_principals API to security
policy.

0.2.1 (2008-07-20)

	Add find_interface API.

0.2 (2008-07-19)

	Add wsgiapp decorator.

	The concept of “view factories” was removed in favor of always calling a
view, which is a callable that returns a response directly (as opposed to
returning a view). As a result, the factory attribute in the
bfg:view ZCML statement has been renamed to view. Various interface
names were changed also.

	render_template and render_transform no longer return a Response
object. Instead, these return strings. The old behavior can be obtained
by using render_template_to_response and
render_transform_to_response.

	Added ‘repoze.bfg.push:pushpage’ decorator, which creates BFG views from
callables which take (context, request) and return a mapping of top-level
names.

	Added ACL-based security.

	Support for XSLT templates via a render_transform method

0.1 (2008-07-08)

	Initial release.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

 Defending Pyramid’s Design

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	The Pyramid Web Application Development Framework v1.0a7

Defending Pyramid’s Design

From time to time, challenges to various aspects of Pyramid
design are lodged. To give context to discussions that follow, we
detail some of the design decisions and trade-offs here. In some
cases, we acknowledge that the framework can be made better and we
describe future steps which will be taken to improve it; in some cases
we just file the challenge as “noted”, as obviously you can’t please
everyone all of the time.

Pyramid Has Zope Things In It, So It’s Too Complex

On occasion, someone will feel compelled to post a mailing
list message that reads something like this:

had a quick look at pyramid ... too complex to me and not really
understand for which benefits.. I feel should consider whether it's time
for me to step back to django .. I always hated zope (useless ?)
complexity and I love simple way of thinking

(Paraphrased from a real email, actually.)

Let’s take this criticism point-by point.

Too Complex

	If you can understand this hello world program, you can use Pyramid:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from paste.httpserver import serve
from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 serve(app)

	Pyramid is 5,000 lines of runtime code. Pylons 1.0 has about 3,000 lines
of runtime code. Django has about 60,000 lines of runtime code. You’d
practically need to bend the laws of space and time for Django to be
simpler than Pyramid.

	It has 600 or more pages of documentation (printed), covering topics from
the very basic to the most advanced. Nothing is left undocumented, quite
literally.

	It has an awesome, very helpful community. Visit the #repoze and/or
#pylons IRC channels on freenode.net and see.

Hate Zope

I’m sorry you feel that way. The Zope brand has certainly taken its share of
lumps over the years, and has a reputation for being insular and mysterious.
But the word “Zope” is literally quite meaningless without qualification.
What part of Zope do you hate? “Zope” is a brand, not a technology.

If it’s Zope2-the-web-framework, Pyramid is not that. The primary designers
and developers of Pyramid, if anyone, should know. We wrote Pyramid’s
predecessor (repoze.bfg), in part, because we knew that Zope 2 had
usability issues and limitations. repoze.bfg (and now Pyramid)
was written to address these issues.

If it’s Zope3-the-web-framework, Pyramid is definitely not that. Making
use of lots of Zope 3 technologies is territory already staked out by the
Grok project. Save for the obvious fact that they’re both web
frameworks, Pyramid is very, very different than Grok. Grok exposes
lots of Zope technologies to end users. On the other hand, if you need to
understand a Zope-only concept while using Pyramid, then we’ve failed on some
very basic axis.

If it’s just the word Zope: it’s, charitably, only guilt by association. You
need to understand that just because a piece of software internally uses some
package named zope.foo, it doesn’t turn the piece of software that uses
it into “Zope”. There is a lot of great software written that has the word
Zope in its name. Zope is not some sort of monolithic thing, and a lot of
its software is usable externally.

Zope Is Useless

It’s not really the job of this document to defend Zope. But Zope has been
around for over 10 years and has an incredibly large, active community. If
you don’t believe this, http://taichino.appspot.com/pypi_ranking/authors is
an eye-opening reality check.

Love Simplicity

Years of effort have gone into honing this package and its documentation to
make it as simple as humanly possible for developers to use. Everything is a
tradeoff, of course, and people have their own ideas about what “simple” is.
You may have a style difference if you believe Pyramid is complex. Its
developers obviously disagree.

Pyramid Uses A Zope Component Architecture (“ZCA”) Registry

Pyramid uses a Zope Component Architecture (ZCA)
“component registry” as its application registry under the
hood. This is a point of some contention. Pyramid is of a
Zope pedigree, so it was natural for its developers to use a
ZCA registry at its inception. However, we understand that using a
ZCA registry has issues and consequences, which we’ve attempted to
address as best we can. Here’s an introspection about
Pyramid use of a ZCA registry, and the trade-offs its usage
involves.

Problems

The “global” API that may be used to access data in a ZCA “component
registry” is not particularly pretty or intuitive, and sometimes it’s
just plain obtuse. Likewise, the conceptual load on a casual source
code reader of code that uses the ZCA global API is somewhat high.
Consider a ZCA neophyte reading the code that performs a typical
“unnamed utility” lookup using the zope.component.getUtility()
global API:

	1
2
3

	from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility(ISettings)

After this code runs, settings will be a Python dictionary. But
it’s unlikely that any “civilian” would know that just by reading the
code. There are a number of comprehension issues with the bit of code
above that are obvious.

First, what’s a “utility”? Well, for the purposes of this discussion,
and for the purpose of the code above, it’s just not very important.
If you really want to know, you can read this [http://www.muthukadan.net/docs/zca.html#utility]. However, still,
readers of such code need to understand the concept in order to parse
it. This is problem number one.

Second, what’s this ISettings thing? It’s an interface.
Is that important here? Not really, we’re just using it as a “key”
for some lookup based on its identity as a marker: it represents an
object that has the dictionary API, but that’s not very important in
this context. That’s problem number two.

Third of all, what does the getUtility function do? It’s
performing a lookup for the ISettings “utility” that should
return.. well, a utility. Note how we’ve already built up a
dependency on the understanding of an interface and the
concept of “utility” to answer this question: a bad sign so far. Note
also that the answer is circular, a really bad sign.

Fourth, where does getUtility look to get the data? Well, the
“component registry” of course. What’s a component registry? Problem
number four.

Fifth, assuming you buy that there’s some magical registry hanging
around, where is this registry? Homina homina... “around”?
That’s sort of the best answer in this context (a more specific answer
would require knowledge of internals). Can there be more than one
registry? Yes. So which registry does it find the registration in?
Well, the “current” registry of course. In terms of
Pyramid, the current registry is a thread local variable.
Using an API that consults a thread local makes understanding how it
works non-local.

You’ve now bought in to the fact that there’s a registry that is just
“hanging around”. But how does the registry get populated? Why,
ZCML of course. Sometimes. Or via imperative code. In this
particular case, however, the registration of ISettings is made by
the framework itself “under the hood”: it’s not present in any ZCML
nor was it performed imperatively. This is extremely hard to
comprehend. Problem number six.

Clearly there’s some amount of cognitive load here that needs to be
borne by a reader of code that extends the Pyramid framework
due to its use of the ZCA, even if he or she is already an expert
Python programmer and whom is an expert in the domain of web
applications. This is suboptimal.

Ameliorations

First, the primary amelioration: Pyramid does not expect
application developers to understand ZCA concepts or any of its APIs.
If an application developer needs to understand a ZCA concept or API
during the creation of a Pyramid application, we’ve failed
on some axis.

Instead, the framework hides the presence of the ZCA registry behind
special-purpose API functions that do use ZCA APIs. Take for
example the pyramid.security.authenticated_userid function,
which returns the userid present in the current request or None if
no userid is present in the current request. The application
developer calls it like so:

	1
2

	from pyramid.security import authenticated_userid
userid = authenticated_userid(request)

He now has the current user id.

Under its hood however, the implementation of authenticated_userid
is this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def authenticated_userid(request):
 """ Return the userid of the currently authenticated user or
 ``None`` if there is no authentication policy in effect or there
 is no currently authenticated user. """

 registry = request.registry # the ZCA component registry
 policy = registry.queryUtility(IAuthenticationPolicy)
 if policy is None:
 return None
 return policy.authenticated_userid(request)

Using such wrappers, we strive to always hide the ZCA API from
application developers. Application developers should just never know
about the ZCA API: they should call a Python function with some object
germane to the domain as an argument, and it should returns a result.
A corollary that follows is that any reader of an application that has
been written using Pyramid needn’t understand the ZCA API
either.

Hiding the ZCA API from application developers and code readers is a
form of enhancing “domain specificity”. No application developer
wants to need to understand the minutiae of the mechanics of how a web
framework does its thing. People want to deal in concepts that are
closer to the domain they’re working in: for example, web developers
want to know about users, not utilities. Pyramid uses
the ZCA as an implementation detail, not as a feature which is exposed
to end users.

However, unlike application developers, framework developers,
including people who want to override Pyramid functionality
via preordained framework plugpoints like traversal or view lookup
must understand the ZCA registry API.

Pyramid framework developers were so concerned about
conceptual load issues of the ZCA registry API for framework
developers that a replacement registry implementation [http://svn.repoze.org/repoze.component/trunk] named
repoze.component was actually developed. Though this package
has a registry implementation which is fully functional and
well-tested, and its API is much nicer than the ZCA registry API, work
on it was largely abandoned and it is not used in Pyramid.
We continued to use a ZCA registry within Pyramid because it
ultimately proved a better fit.

Note

We continued using ZCA registry rather than disusing it in
favor of using the registry implementation in
repoze.component largely because the ZCA concept of
interfaces provides for use of an interface hierarchy, which is
useful in a lot of scenarios (such as context type inheritance).
Coming up with a marker type that was something like an interface
that allowed for this functionality seemed like it was just
reinventing the wheel.

Making framework developers and extenders understand the ZCA registry
API is a trade-off. We (the Pyramid developers) like the
features that the ZCA registry gives us, and we have long-ago borne
the weight of understanding what it does and how it works. The
authors of Pyramid understand the ZCA deeply and can read
code that uses it as easily as any other code.

But we recognize that developers who my want to extend the framework
are not as comfortable with the ZCA registry API as the original
developers are with it. So, for the purposes of being kind to
third-party Pyramid framework developers in, we’ve drawn
some lines in the sand.

	In all “core” code, We’ve made use of ZCA global API functions such
as zope.component.getUtility and zope.component.getAdapter
the exception instead of the rule. So instead of:

	1
2
3

	from pyramid.interfaces import IAuthenticationPolicy
from zope.component import getUtility
policy = getUtility(IAuthenticationPolicy)

Pyramid code will usually do:

	1
2
3
4

	from pyramid.interfaces import IAuthenticationPolicy
from pyramid.threadlocal import get_current_registry
registry = get_current_registry()
policy = registry.getUtility(IAuthenticationPolicy)

While the latter is more verbose, it also arguably makes it more
obvious what’s going on. All of the Pyramid core code uses
this pattern rather than the ZCA global API.

	We’ve turned the component registry used by Pyramid into
something that is accessible using the plain old dictionary API
(like the repoze.component API). For example, the snippet
of code in the problem section above was:

	1
2
3

	from pyramid.interfaces import ISettings
from zope.component import getUtility
settings = getUtility(ISettings)

In a better world, we might be able to spell this as:

	1
2
3
4

	from pyramid.threadlocal import get_current_registry

registry = get_current_registry()
settings = registry['settings']

In this world, we’ve removed the need to understand utilities and
interfaces, because we’ve disused them in favor of a plain dictionary
lookup. We haven’t removed the need to understand the concept of a
registry, but for the purposes of this example, it’s simply a
dictionary. We haven’t killed off the concept of a thread local
either. Let’s kill off thread locals, pretending to want to do this
in some code that has access to the request:

	1
2

	registry = request.registry
settings = registry['settings']

In this world, we’ve reduced the conceptual problem to understanding
attributes and the dictionary API. Every Python programmer knows
these things, even framework programmers.

While Pyramid still uses some suboptimal unnamed utility
registrations, future versions of it will where possible disuse these
things in favor of straight dictionary assignments and lookups, as
demonstrated above, to be kinder to new framework developers. We’ll
continue to seek ways to reduce framework developer cognitive load.

Rationale

Here are the main rationales involved in the Pyramid
decision to use the ZCA registry:

	Pedigree. A nontrivial part of the answer to this question is
“pedigree”. Much of the design of Pyramid is stolen
directly from Zope. Zope uses the ZCA registry to do a
number of tricks. Pyramid mimics these tricks, and,
because the ZCA registry works well for that set of tricks,
Pyramid uses it for the same purposes. For example, the
way that Pyramid maps a request to a view
callable is lifted almost entirely from Zope. The ZCA registry
plays an important role in the particulars of how this request to
view mapping is done.

	Features. The ZCA component registry essentially provides what can
be considered something like a “superdictionary”, which allows for
more complex lookups than retrieving a value based on a single key.
Some of this lookup capability is very useful for end users, such as
being able to register a view that is only found when the context is
some class of object, or when the context implements some
interface.

	Singularity. There’s only one “place” where “application
configuration” lives in a Pyramid application: in a
component registry. The component registry answers questions made
to it by the framework at runtime based on the configuration of an
application. Note: “an application” is not the same as “a
process”, multiple independently configured copies of the same
Pyramid application are capable of running in the same
process space.

	Composability. A ZCA component registry can be populated
imperatively, or there’s an existing mechanism to populate a
registry via the use of a configuration file (ZCML). We didn’t need
to write a frontend from scratch to make use of
configuration-file-driven registry population.

	Pluggability. Use of the ZCA registry allows for framework
extensibility via a well-defined and widely understood plugin
architecture. As long as framework developers and extenders
understand the ZCA registry, it’s possible to extend
Pyramid almost arbitrarily. For example, it’s relatively
easy to build a ZCML directive that registers several views “all at
once”, allowing app developers to use that ZCML directive as a
“macro” in code that they write. This is somewhat of a
differentiating feature from other (non-Zope) frameworks.

	Testability. Judicious use of the ZCA registry in framework code
makes testing that code slightly easier. Instead of using
monkeypatching or other facilities to register mock objects for
testing, we inject dependencies via ZCA registrations and then use
lookups in the code find our mock objects.

	Speed. The ZCA registry is very fast for a specific set of complex
lookup scenarios that Pyramid uses, having been optimized
through the years for just these purposes. The ZCA registry
contains optional C code for this purpose which demonstrably has no
(or very few) bugs.

	Ecosystem. Many existing Zope packages can be used in
Pyramid with few (or no) changes due to our use of the ZCA
registry and ZCML.

Conclusion

If you only develop applications using Pyramid, there’s not much to
complain about here. You just should never need to understand the ZCA
registry or even know about its presence: use documented Pyramid APIs
instead. However, you may be an application developer who doesn’t read API
documentation because it’s unmanly. Instead you read the raw source code, and
because you haven’t read the documentation, you don’t know what functions,
classes, and methods even form the Pyramid API. As a result, you’ve
now written code that uses internals and you’ve painted yourself into a
conceptual corner as a result of needing to wrestle with some ZCA-using
implementation detail. If this is you, it’s extremely hard to have a lot of
sympathy for you. You’ll either need to get familiar with how we’re using
the ZCA registry or you’ll need to use only the documented APIs; that’s why
we document them as APIs.

If you extend or develop Pyramid (create new ZCML directives, use
some of the more obscure “ZCML hooks” as described in Using Hooks,
or work on the Pyramid core code), you will be faced with needing to
understand at least some ZCA concepts. In some places it’s used unabashedly,
and will be forever. We know it’s quirky, but it’s also useful and
fundamentally understandable if you take the time to do some reading about
it.

Pyramid Uses Interfaces Too Liberally

In this TOPP Engineering blog entry [http://www.coactivate.org/projects/topp-engineering/blog/2008/10/20/what-bothers-me-about-the-component-architecture/],
Ian Bicking asserts that the way repoze.bfg used a Zope interface to
represent an HTTP request method added too much indirection for not enough
gain. We agreed in general, and for this reason, repoze.bfg version 1.1
(and subsequent versions including Pyramid 1.0+) added view
predicate and route predicate modifiers to view configuration.
Predicates are request-specific (or context -specific) matching
narrowers which don’t use interfaces. Instead, each predicate uses a
domain-specific string as a match value.

For example, to write a view configuration which matches only requests
with the POST HTTP request method, you might write a @view_config
decorator which mentioned the request_method predicate:

	1
2
3
4

	from pyramid.view import view_config
@view_config(name='post_view', request_method='POST', renderer='json')
def post_view(request):
 return 'POSTed'

You might further narrow the matching scenario by adding an accept
predicate that narrows matching to something that accepts a JSON
response:

	1
2
3
4
5

	from pyramid.view import view_config
@view_config(name='post_view', request_method='POST',
 accept='application/json', renderer='json')
def post_view(request):
 return 'POSTed'

Such a view would only match when the request indicated that HTTP
request method was POST and that the remote user agent passed
application/json (or, for that matter, application/*) in its
Accept request header.

“Under the hood”, these features make no use of interfaces.

For more information about predicates, see
view_predicates_in_1dot1 and route_predicates_in_1dot1.

Many “prebaked” predicates exist. However, use of only “prebaked” predicates,
however, doesn’t entirely meet Ian’s criterion. He would like to be able to
match a request using a lambda or another function which interrogates the
request imperatively. In repoze.bfg version 1.2, we acommodate this by
allowing people to define “custom” view predicates:

	1
2
3
4
5
6
7
8
9

	from pyramid.view import view_config
from webob import Response

def subpath(context, request):
 return request.subpath and request.subpath[0] == 'abc'

@view_config(custom_predicates=(subpath,))
def aview(request):
 return Response('OK')

The above view will only match when the first element of the request’s
subpath is abc.

Pyramid “Encourages Use of ZCML”

ZCML is a configuration language that can be used to configure the
Zope Component Architecture registry that Pyramid uses as its
application configuration. Often people claim that Pyramid “needs ZCML”.

Quick answer: well, it doesn’t. At least not anymore. In repoze.bfg
(the predecessor to Pyramid) versions 1.0 and and 1.1, an application needed to
possess a ZCML file for it to begin executing successfully. However,
repoze.bfg 1.2 and greater (including Pyramid 1.0) includes a
completely imperative mode for all configuration. You will be able to make
“single file” apps in this mode, which should help people who need to see
everything done completely imperatively. For example, the very most basic
Pyramid “helloworld” program has become something like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from webob import Response
from paste.httpserver import serve
from pyramid.config import Configurator

def hello_world(request):
 return Response('Hello world!')

if __name__ == '__main__':
 config = Configurator()
 config.add_view(hello_world)
 app = config.make_wsgi_app()
 serve(app)

In this mode, no ZCML is required at all. Hopefully this mode will allow
people who are used to doing everything imperatively feel more comfortable.

Pyramid Uses ZCML; ZCML is XML and I Don’t Like XML

ZCML is a configuration language in the XML syntax. Due to the
“imperative configuration” feature (new in repoze.bfg 1.2), you don’t
need to use ZCML at all. But if you really do want to perform declarative
configuration, perhaps because you want to build an extensible application, you
will need to use and understand it.

ZCML contains elements that are mostly singleton tags that are
called declarations. For an example:

	1
2
3
4
5

	<route
 view=".views.my_view"
 path="/"
 name="root"
 />

This declaration associates a view with a route pattern.

All Pyramid declarations are singleton tags, unlike many
other XML configuration systems. No XML values in ZCML are
meaningful; it’s always just XML tags and attributes. So in the very
common case it’s not really very much different than an otherwise
“flat” configuration format like .ini, except a developer can
create a directive that requires nesting (none of these exist in
Pyramid itself), and multiple “sections” can exist with the
same “name” (e.g. two <route> declarations) must be able to exist
simultaneously.

You might think some other configuration file format would be better.
But all configuration formats suck in one way or another. I
personally don’t think any of our lives would be markedly better if
the declarative configuration format used by Pyramid were
YAML, JSON, or INI. It’s all just plumbing that you mostly cut and
paste once you’ve progressed 30 minutes into your first project.
Folks who tend to agitate for another configuration file format are
folks that haven’t yet spent that 30 minutes.

Pyramid Uses “Model” To Represent A Node In The Graph of Objects Traversed

The repoze.bfg documentation used to refer to the graph being traversed
when traversal is used as a “model graph”. A terminology overlap
confused people who wrote applications that always use ORM packages such as
SQLAlchemy, which has a different notion of the definition of a “model”. As
a sresult, in Pyramid 1.0a7, the tree of objects traversed is now renamed to
resource tree and its components are now named resource
objects. Associated APIs have been changed. This hopefully alleviates the
terminology confusion caused by overriding the term “model”.

Pyramid Does Traversal, And I Don’t Like Traversal

In Pyramid, traversal is the act of resolving a URL path to a
resource object in a resource tree. Some people are uncomfortable
with this notion, and believe it is wrong.

This is understandable. The people who believe it is wrong almost invariably
have all of their data in a relational database. Relational databases aren’t
naturally hierarchical, so “traversing” one like a tree is not possible.

Folks who deem traversal unilaterally “wrong” are neglecting to take into
account that many persistence mechanisms are hierarchical. Examples
include a filesystem, an LDAP database, a ZODB (or another type of
graph) database, an XML document, and the Python module namespace. It is
often convenient to model the frontend to a hierarchical data store as a
graph, using traversal to apply views to objects that either are the
resources in the tree being traversed (such as in the case of ZODB) or at
least ones which stand in for them (such as in the case of wrappers for files
from the filesystem).

Also, many website structures are naturally hierarchical, even if the data
which drives them isn’t. For example, newspaper websites are often extremely
hierarchical: sections within sections within sections, ad infinitum. If you
want your URLs to indicate this structure, and the structure is indefinite
(the number of nested sections can be “N” instead of some fixed number), a
resource tree is an excellent way to model this, even if the backend is a
relational database. In this situation, the resource tree a just a site
structure.

But the point is ultimately moot. If you use Pyramid, and you don’t
want to model your application in terms of a resource tree, you needn’t use
it at all. Instead, use URL dispatch to map URL paths to views.

Pyramid Does URL Dispatch, And I Don’t Like URL Dispatch

In Pyramid, url dispatch is the act of resolving a
URL path to a view callable by performing pattern matching
against some set of ordered route definitions. The route definitions
are examined in order: the first pattern which matches is used to
associate the URL with a view callable.

Some people are uncomfortable with this notion, and believe it is
wrong. These are usually people who are steeped deeply in
Zope. Zope does not provide any mechanism except
traversal to map code to URLs. This is mainly because Zope
effectively requires use of ZODB, which is a hierarchical
object store. Zope also supports relational databases, but typically
the code that calls into the database lives somewhere in the ZODB
object graph (or at least is a view related to a node in the
object graph), and traversal is required to reach this code.

I’ll argue that URL dispatch is ultimately useful, even if you want to use
traversal as well. You can actually combine URL dispatch and traversal in
Pyramid (see Combining Traversal and URL Dispatch). One example of such a usage: if
you want to emulate something like Zope 2’s “Zope Management Interface” UI on
top of your object graph (or any administrative interface), you can register
a route like <route name="manage" pattern="manage/*traverse"/> and then
associate “management” views in your code by using the route_name
argument to a view configuration, e.g. <view view=".some.callable"
context=".some.Resource" route_name="manage"/>. If you wire things up this
way someone then walks up to for example, /manage/ob1/ob2, they might be
presented with a management interface, but walking up to /ob1/ob2 would
present them with the default object view. There are other tricks you can
pull in these hybrid configurations if you’re clever (and maybe masochistic)
too.

Also, if you are a URL dispatch hater, if you should ever be asked to
write an application that must use some legacy relational database
structure, you might find that using URL dispatch comes in handy for
one-off associations between views and URL paths. Sometimes it’s just
pointless to add a node to the object graph that effectively
represents the entry point for some bit of code. You can just use a
route and be done with it. If a route matches, a view associated with
the route will be called; if no route matches, Pyramid falls
back to using traversal.

But the point is ultimately moot. If you use Pyramid, and
you really don’t want to use URL dispatch, you needn’t use it at all.
Instead, use traversal exclusively to map URL paths to views,
just like you do in Zope.

Pyramid Views Do Not Accept Arbitrary Keyword Arguments

Many web frameworks (Zope, TurboGears, Pylons 1.X, Django) allow for their
variant of a view callable to accept arbitrary keyword or positional
arguments, which are “filled in” using values present in the request.POST
or request.GET dictionaries or by values present in the “route match
dictionary”. For example, a Django view will accept positional arguments
which match information in an associated “urlconf” such as
r'^polls/(?P<poll_id>\d+)/$:

	1
2

	def aview(request, poll_id):
 return HttpResponse(poll_id)

Zope, likewise allows you to add arbitrary keyword and positional
arguments to any method of a resource object found via traversal:

	1
2
3
4
5

	from persistent import Persistent

class MyZopeObject(Persistent):
 def aview(self, a, b, c=None):
 return '%s %s %c' % (a, b, c)

When this method is called as the result of being the published
callable, the Zope request object’s GET and POST namespaces are
searched for keys which match the names of the positional and keyword
arguments in the request, and the method is called (if possible) with
its argument list filled with values mentioned therein. TurboGears
and Pylons 1.X operate similarly.

Pyramid has neither of these features. pyramid
view callables always accept only context and request (or just
request), and no other arguments. The rationale: this argument
specification matching done aggressively can be costly, and
Pyramid has performance as one of its main goals, so we’ve
decided to make people obtain information by interrogating the request
object for it in the view body instead of providing magic to do
unpacking into the view argument list. The feature itself also just
seems a bit like a gimmick. Getting the arguments you want explicitly
from the request via getitem is not really very hard; it’s certainly
never a bottleneck for the author when he writes web apps.

It is possible to replicate the Zope-like behavior in a view callable
decorator, however, should you badly want something like it back. No
such decorator currently exists. If you’d like to create one, Google
for “zope mapply” and adapt the function you’ll find to a decorator
that pulls the argument mapping information out of the
request.params dictionary.

A similar feature could be implemented to provide the Django-like
behavior as a decorator by wrapping the view with a decorator that
looks in request.matchdict.

It’s possible at some point that Pyramid will grow some form
of argument matching feature (it would be simple to make it an
always-on optional feature that has no cost unless you actually use
it) for, but currently it has none.

Pyramid Provides Too Few “Rails”

By design, Pyramid is not a particularly “opinionated” web framework.
It has a relatively parsimonious feature set. It contains no built in ORM
nor any particular database bindings. It contains no form generation
framework. It has no administrative web user interface. It has no built in
text indexing. It does not dictate how you arrange your code.

Such opinionated functionality exists in applications and frameworks built
on top of Pyramid. It’s intended that higher-level systems emerge
built using Pyramid as a base. See also Pyramid Applications are Extensible; I Don’t Believe In Application Extensibility.

Pyramid Provides Too Many “Rails”

Pyramid provides some features that other web frameworks do
not. Most notably it has machinery which resolves a URL first to a
context before calling a view (which has the capability to
accept the context in its argument list), and a declarative
authorization system that makes use of this feature. Most other web
frameworks besides Zope, from which the pattern was stolen,
have no equivalent core feature.

We consider this an important feature for a particular class of
applications (CMS-style applications, which the authors are often
commissioned to write) that usually use traversal against a
persistent object graph. The object graph contains security
declarations as ACL objects.

Having context-sensitive declarative security for individual objects
in the object graph is simply required for this class of application.
Other frameworks save for Zope just do not have this feature. This is
one of the primary reasons that Pyramid was actually
written.

If you don’t like this, it doesn’t mean you can’t use
Pyramid. Just ignore this feature and avoid configuring an
authorization or authentication policy and using ACLs. You can build
“Pylons-1.X-style” applications using Pyramid that use their own
security model via decorators or plain-old-imperative logic in view
code.

Pyramid Is Too Big

“The Pyramid compressed tarball is almost 2MB. It must be
enormous!”

No. We just ship it with test code and helper templates. Here’s a
breakdown of what’s included in subdirectories of the package tree:

docs/

3.0MB

pyramid/tests/

1.1MB

pyramid/paster_templates/

804KB

pyramid/ (except for pyramd/tests and pyramid/paster_templates)

539K

The actual Pyramid runtime code is about 10% of the total size of the
tarball omitting docs, helper templates used for package generation, and test
code. Of the approximately 19K lines of Python code in the package, the code
that actually has a chance of executing during normal operation, excluding
tests and paster template Python files, accounts for approximately 5K lines
of Python code. This is comparable to Pylons 1.X, which ships with a little
over 2K lines of Python code, excluding tests.

Pyramid Has Too Many Dependencies

This is true. At the time of this writing, the total number of Python
package distributions that Pyramid depends upon transitively
is 18 if you use Python 2.6 or 2.7, or 16 if you use Python 2.4 or
2.5. This is a lot more than zero package distribution dependencies:
a metric which various Python microframeworks and Django boast.

The zope.component and zope.configuration packages on
which Pyramid depends have transitive dependencies on
several other packages (zope.schema, zope.i18n,
zope.event, zope.interface, zope.deprecation,
zope.i18nmessageid). We’ve been working with the Zope
community to try to collapse and untangle some of these dependencies.
We’d prefer that these packages have fewer packages as transitive
dependencies, and that much of the functionality of these packages was
moved into a smaller number of packages.

Pyramid also has its own direct dependencies, such as Paste,
Chameleon, Mako and WebOb, and some of these in turn
have their own transitive dependencies.

It should be noted that Pyramid is positively lithe compared
to Grok, a different Zope-based framework. As of this
writing, in its default configuration, Grok has 126 package
distribution dependencies. The number of dependencies required by
Pyramid is many times fewer than Grok (or Zope itself, upon
which Grok is based). Pyramid has a number of package
distribution dependencies comparable to similarly-targeted frameworks
such as Pylons 1.X.

We try not to reinvent too many wheels (at least the ones that don’t
need reinventing), and this comes at the cost of some number of
dependencies. However, “number of package distributions” is just not
a terribly great metric to measure complexity. For example, the
zope.event distribution on which Pyramid depends has
a grand total of four lines of runtime code. As noted above, we’re
continually trying to agitate for a collapsing of these sorts of
packages into fewer distribution files.

Pyramid “Cheats” To Obtain Speed

Complaints have been lodged by other web framework authors at various
times that Pyramid “cheats” to gain performance. One
claimed cheating mechanism is our use (transitively) of the C
extensions provided by zope.interface to do fast lookups.
Another claimed cheating mechanism is the religious avoidance of
extraneous function calls.

If there’s such a thing as cheating to get better performance, we want
to cheat as much as possible. We optimize Pyramid
aggressively. This comes at a cost: the core code has sections that
could be expressed more readably. As an amelioration, we’ve commented
these sections liberally.

Pyramid Gets Its Terminology Wrong (“MVC”)

“I’m a MVC web framework user, and I’m confused. Pyramid
calls the controller a view! And it doesn’t have any controllers.”

If you are in this camp, you might have come to expect things about how your
existing “MVC” framework uses its terminology. For example, you probably
expect that models are ORM models, controllers are classes that have methods
that map to URLs, and views are templates. Pyramid indeed has each of
these concepts, and each probably works almost exactly like your existing
“MVC” web framework. We just don’t use the “MVC” terminology, as we can’t
square its usage in the web framework space with historical reality.

People very much want to give web applications the same properties as
common desktop GUI platforms by using similar terminology, and to
provide some frame of reference for how various components in the
common web framework might hang together. But in the opinion of the
author, “MVC” doesn’t match the web very well in general. Quoting from
the Model-View-Controller Wikipedia entry [http://en.wikipedia.org/wiki/Model–view–controller]:

Though MVC comes in different flavors, control flow is generally as
follows:

 The user interacts with the user interface in some way (for
 example, presses a mouse button).

 The controller handles the input event from the user interface,
 often via a registered handler or callback and converts the event
 into appropriate user action, understandable for the model.

 The controller notifies the model of the user action, possibly
 resulting in a change in the model's state. (For example, the
 controller updates the user's shopping cart.)[5]

 A view queries the model in order to generate an appropriate
 user interface (for example, the view lists the shopping cart's
 contents). Note that the view gets its own data from the model.

 The controller may (in some implementations) issue a general
 instruction to the view to render itself. In others, the view is
 automatically notified by the model of changes in state
 (Observer) which require a screen update.

 The user interface waits for further user interactions, which
 restarts the cycle.

To the author, it seems as if someone edited this Wikipedia
definition, tortuously couching concepts in the most generic terms
possible in order to account for the use of the term “MVC” by current
web frameworks. I doubt such a broad definition would ever be agreed
to by the original authors of the MVC pattern. But even so, it
seems most “MVC” web frameworks fail to meet even this falsely generic
definition.

For example, do your templates (views) always query models directly as
is claimed in “note that the view gets its own data from the model”?
Probably not. My “controllers” tend to do this, massaging the data for
easier use by the “view” (template). What do you do when your
“controller” returns JSON? Do your controllers use a template to
generate JSON? If not, what’s the “view” then? Most MVC-style GUI web
frameworks have some sort of event system hooked up that lets the view
detect when the model changes. The web just has no such facility in
its current form: it’s effectively pull-only.

So, in the interest of not mistaking desire with reality, and instead of
trying to jam the square peg that is the web into the round hole of “MVC”, we
just punt and say there are two things: resources and views. The resource
tree represents a site structure, the view presents a resource. The
templates are really just an implementation detail of any given view: a view
doesn’t need a template to return a response. There’s no “controller”: it
just doesn’t exist. The “model” is either represented by the resource tree
or by a “domain model” (like a SQLAlchemy model) that is separate from the
framework entirely. This seems to us like more reasonable terminology, given
the current constraints of the web.

Pyramid Applications are Extensible; I Don’t Believe In Application Extensibility

Any Pyramid application written obeying certain constraints
is extensible. This feature is discussed in the Pyramid
documentation chapter named Extending An Existing Pyramid Application. It is made
possible by the use of the Zope Component Architecture and
ZCML within Pyramid.

“Extensible”, in this context, means:

	The behavior of an application can be overridden or extended in a
particular deployment of the application without requiring that
the deployer modify the source of the original application.

	The original developer is not required to anticipate any
extensibility plugpoints at application creation time to allow
fundamental application behavior to be overriden or extended.

	The original developer may optionally choose to anticipate an
application-specific set of plugpoints, which may be hooked by
a deployer. If he chooses to use the facilities provided by the
ZCA, the original developer does not need to think terribly hard
about the mechanics of introducing such a plugpoint.

Many developers seem to believe that creating extensible applications
is “not worth it”. They instead suggest that modifying the source of
a given application for each deployment to override behavior is more
reasonable. Much discussion about version control branching and
merging typically ensues.

It’s clear that making every application extensible isn’t required.
The majority of web applications only have a single deployment, and
thus needn’t be extensible at all. However, some web applications
have multiple deployments, and some have many deployments. For
example, a generic “content management” system (CMS) may have basic
functionality that needs to be extended for a particular deployment.
That CMS system may be deployed for many organizations at many places.
Some number of deployments of this CMS may be deployed centrally by a
third party and managed as a group. It’s useful to be able to extend
such a system for each deployment via preordained plugpoints than it
is to continually keep each software branch of the system in sync with
some upstream source: the upstream developers may change code in such
a way that your changes to the same codebase conflict with theirs in
fiddly, trivial ways. Merging such changes repeatedly over the
lifetime of a deployment can be difficult and time consuming, and it’s
often useful to be able to modify an application for a particular
deployment in a less invasive way.

If you don’t want to think about Pyramid application
extensibility at all, you needn’t. You can ignore extensibility
entirely. However, if you follow the set of rules defined in
Extending An Existing Pyramid Application, you don’t need to make your application
extensible: any application you write in the framework just is
automatically extensible at a basic level. The mechanisms that
deployers use to extend it will be necessarily coarse: typically,
views, routes, and resources will be capable of being overridden,
usually via ZCML. But for most minor (and even some major)
customizations, these are often the only override plugpoints
necessary: if the application doesn’t do exactly what the deployment
requires, it’s often possible for a deployer to override a view,
route, or resource and quickly make it do what he or she wants it to
do in ways not necessarily anticipated by the original developer.
Here are some example scenarios demonstrating the benefits of such a
feature.

	If a deployment needs a different styling, the deployer may override
the main template and the CSS in a separate Python package which
defines overrides.

	If a deployment needs an application page to do something
differently needs it to expose more or different information, the
deployer may override the view that renders the page within a
separate Python package.

	If a deployment needs an additional feature, the deployer may add a
view to the override package.

As long as the fundamental design of the upstream package doesn’t
change, these types of modifications often survive across many
releases of the upstream package without needing to be revisited.

Extending an application externally is not a panacea, and carries a
set of risks similar to branching and merging: sometimes major changes
upstream will cause you to need to revisit and update some of your
modifications. But you won’t regularly need to deal wth meaningless
textual merge conflicts that trivial changes to upstream packages
often entail when it comes time to update the upstream package,
because if you extend an application externally, there just is no
textual merge done. Your modifications will also, for whatever its
worth, be contained in one, canonical, well-defined place.

Branching an application and continually merging in order to get new
features and bugfixes is clearly useful. You can do that with a
Pyramid application just as usefully as you can do it with
any application. But deployment of an application written in
Pyramid makes it possible to avoid the need for this even if
the application doesn’t define any plugpoints ahead of time. It’s
possible that promoters of competing web frameworks dismiss this
feature in favor of branching and merging because applications written
in their framework of choice aren’t extensible out of the box in a
comparably fundamental way.

While Pyramid application are fundamentally extensible even
if you don’t write them with specific extensibility in mind, if you’re
moderately adventurous, you can also take it a step further. If you
learn more about the Zope Component Architecture, you can
optionally use it to expose other more domain-specific configuration
plugpoints while developing an application. The plugpoints you expose
needn’t be as coarse as the ones provided automatically by
Pyramid itself. For example, you might compose your own
ZCML directive that configures a set of views for a prebaked
purpose (e.g. restview or somesuch) , allowing other people to
refer to that directive when they make declarations in the
configure.zcml of their customization package. There is a cost
for this: the developer of an application that defines custom
plugpoints for its deployers will need to understand the ZCA or he
will need to develop his own similar extensibility system.

Ultimately, any argument about whether the extensibility features lent
to applications by Pyramid are “good” or “bad” is somewhat
pointless. You needn’t take advantage of the extensibility features
provided by a particular Pyramid application in order to
affect a modification for a particular set of its deployments. You
can ignore the application’s extensibility plugpoints entirely, and
instead use version control branching and merging to manage
application deployment modifications instead, as if you were deploying
an application written using any other web framework.

Zope 3 Enforces “TTW” Authorization Checks By Default; Pyramid Does Not

Challenge

Pyramid performs automatic authorization checks only at
view execution time. Zope 3 wraps context objects with a
security proxy <http://wiki.zope.org/zope3/WhatAreSecurityProxies>,
which causes Zope 3 to do also security checks during attribute
access. I like this, because it means:

	When I use the security proxy machinery, I can have a view that
conditionally displays certain HTML elements (like form fields) or
prevents certain attributes from being modified depending on the the
permissions that the accessing user possesses with respect to a context
object.

	I want to also expose my resources via a REST API using Twisted Web. If
Pyramid performed authorization based on attribute access via Zope3’s
security proxies, I could enforce my authorization policy in both
Pyramid and in the Twisted-based system the same way.

Defense

Pyramid was developed by folks familiar with Zope 2, which
has a “through the web” security model. This “TTW” security model was
the precursor to Zope 3’s security proxies. Over time, as the
Pyramid developers (working in Zope 2) created such sites,
we found authorization checks during code interpretation extremely
useful in a minority of projects. But much of the time, TTW
authorization checks usually slowed down the development velocity of
projects that had no delegation requirements. In particular, if we
weren’t allowing “untrusted” users to write arbitrary Python code to
be executed by our application, the burden of “through the web”
security checks proved too costly to justify. We (collectively)
haven’t written an application on top of which untrusted developers
are allowed to write code in many years, so it seemed to make sense to
drop this model by default in a new web framework.

And since we tend to use the same toolkit for all web applications, it’s
just never been a concern to be able to use the same set of
restricted-execution code under two web different frameworks.

Justifications for disabling security proxies by default
notwithstanding, given that Zope 3 security proxies are “viral” by
nature, the only requirement to use one is to make sure you wrap a
single object in a security proxy and make sure to access that object
normally when you want proxy security checks to happen. It is
possible to override the Pyramid “traverser” for a given
application (see Changing the Traverser). To get Zope3-like
behavior, it is possible to plug in a different traverser which
returns Zope3-security-proxy-wrapped objects for each traversed object
(including the context and the root). This would have
the effect of creating a more Zope3-like environment without much
effort.

Microframeworks Have Smaller Hello World Programs

Self-described “microframeworks” exist: Bottle [http://bottle.paws.de] and Flask [http://flask.pocoo.org/] are
two that are becoming popular. Bobo [http://bobo.digicool.com/]
doesn’t describe itself as a microframework, but its intended userbase
is much the same. Many others exist. We’ve actually even (only as a
teaching tool, not as any sort of official project) created one using
BFG [http://bfg.repoze.org/videos#groundhog1] (the precursor to
Pyramid). Microframeworks are small frameworks with one common
feature: each allows its users to create a fully functional
application that lives in a single Python file.

Some developers and microframework authors point out that Pyramid’s
“hello world” single-file program is longer (by about five lines) than
the equivalent program in their favorite microframework. Guilty as
charged; in a contest of “whose is shortest”, Pyramid indeed loses.

This loss isn’t for lack of trying. Pyramid aims to be useful in the
same circumstance in which microframeworks claim dominance:
single-file applications. But Pyramid doesn’t sacrifice its ability
to credibly support larger applications in order to achieve
hello-world LoC parity with the current crop of microframeworks.
Pyramid’s design instead tries to avoid some common pitfalls
associated with naive declarative configuration schemes. The
subsections which follow explain the rationale.

Application Programmers Don’t Control The Module-Scope Codepath (Import-Time Side-Effects Are Evil)

Please imagine a directory structure with a set of Python files in
it:

.
|-- app.py
|-- app2.py
`-- config.py

The contents of app.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from config import decorator
from config import L
import pprint

@decorator
def foo():
 pass

if __name__ == '__main__':
 import app2
 pprint.pprint(L)

The contents of app2.py:

	1
2
3
4
5

	import app

@app.decorator
def bar():
 pass

The contents of config.py:

	1
2
3
4
5

	 L = []

 def decorator(func):
 L.append(func)
 return func

If we cd to the directory that holds these files and we run python
app.py given the directory structure and code above, what happens?
Presuably, our decorator decorator will be used twice, once by the
decorated function foo in app.py and once by the decorated
function bar in app2.py. Since each time the decorator is
used, the list L in config.py is appended to, we’d expect a
list with two elements to be printed, right? Sadly, no:

[chrism@thinko]$ python app.py
[<function foo at 0x7f4ea41ab1b8>,
 <function foo at 0x7f4ea41ab230>,
 <function bar at 0x7f4ea41ab2a8>]

By visual inspection, that outcome (three different functions in the
list) seems impossible. We only defined two functions and we
decorated each of those functions only once, so we believe that the
decorator decorator will only run twice. However, what we believe
is wrong because the code at module scope in our app.py module was
executed twice. The code is executed once when the script is run as
__main__ (via python app.py), and then it is executed again
when app2.py imports the same file as app.

What does this have to do with our comparison to microframeworks?
Many microframeworks in the current crop (e.g. Bottle, Flask)
encourage you to attach configuration decorators to objects defined at
module scope. These decorators execute arbitrarily complex
registration code which populates a singleton registry that is a
global defined in external Python module. This is analogous to the
above example: the “global registry” in the above example is the list
L.

Let’s see what happens when we use the same pattern with the
Groundhog [http://bfg.repoze.org/videos#groundhog1] microframework.
Replace the contents of app.py above with this:

	1
2
3
4
5
6
7
8
9

	from config import gh

@gh.route('/foo/')
def foo():
 return 'foo'

if __name__ == '__main__':
 import app2
 pprint.pprint(L)

Replace the contents of app2.py above with this:

	1
2
3
4
5

	import app

@app.gh.route('/bar/')
def bar():
 'return bar'

Replace the contents of config.py above with this:

	1
2

	from groundhog import Groundhog
gh = Groundhog('myapp', 'seekrit')

How many routes will be registered within the routing table of the
“gh” Groundhog application? If you answered three, you are correct.
How many would a casual reader (and any sane developer) expect to be
registered? If you answered two, you are correct. Will the double
registration be a problem? With our fictional Groundhog framework’s
route method backing this application, not really. It will slow
the application down a little bit, because it will need to miss twice
for a route when it does not match. Will it be a problem with another
framework, another application, or another decorator? Who knows. You
need to understand the application in its totality, the framework in
its totality, and the chronology of execution to be able to predict
what the impact of unintentional code double-execution will be.

The encouragement to use decorators which perform population of an
external registry has an unintended consequence: the application
developer now must assert ownership of every codepath that executes
Python module scope code. This code is presumed by the current crop of
decorator-based microframeworks to execute once and only once; if it
executes more than once, weird things will start to happen. It is up
to the application developer to maintain this invariant.
Unfortunately, however, in reality, this is an impossible task,
because, Python programmers do not own the module scope codepath, and
never will. Microframework programmers therefore will at some point
then need to start reading the tea leaves about what might happen if
module scope code gets executed more than once like we do in the
previous paragraph. This is a really pretty poor situation to find
yourself in as an application developer: you probably didn’t even know
you signed up for the job, because the documentation offered by
decorator-based microframeworks don’t warn you about it.

Python application programmers do not control the module scope codepath.
Anyone who tries to sell you on the idea that they do is simply mistaken.
Test runners that you may want to use to run your code’s tests often perform
imports of arbitrary code in strange orders that manifest bugs like the one
demonstrated above. API documentation generation tools do the same. Some
(mutant) people even think it’s safe to use the Python reload command or
delete objects from sys.modules, each of which has hilarious effects when
used against code that has import-time side effects. When Python programmers
assume they can use the module-scope codepath to run arbitrary code
(especially code which populates an external registry), and this assumption
is challenged by reality, the application developer is often required to
undergo a painful, meticulous debugging process to find the root cause of an
inevitably obscure symptom. The solution is often to rearrange application
import ordering or move an import statement from module-scope into a function
body. The rationale for doing so can never be expressed adequnately in the
checkin message which accompanies the fix or documented succinctly enough for
the benefit of the rest of the development team so that the problem never
happens again. It will happen again next month too, especially if you are
working on a project with other people who haven’t yet internalized the
lessons you learned while you stepped through module-scope code using
pdb.

Folks who have a large investment in eager decorator-based
configuration that populates an external data structure (such as
microframework authors) may argue that the set of circumstances I
outlined above is anomalous and contrived. They will argue that it
just will never happen. If you never intend your application to grow
beyond one or two or three modules, that’s probably true. However, as
your codebase grows, and becomes spread across a greater number of
modules, the circumstances in which module-scope code will be executed
multiple times will become more and more likely to occur and less and
less predictable. It’s not responsible to claim that double-execution
of module-scope code will never happen. It will; it’s just a matter
of luck, time, and application complexity.

If microframework authors do admit that the circumstance isn’t
contrived, they might then argue that “real” damage will never happen
as the result of the double-execution (or triple-execution, etc) of
module scope code. You would be wise to disbelieve this assertion.
The potential outcomes of multiple execution are too numerous to
predict because they involve delicate relationships between
application and framework code as well as chronology of code
execution. It’s literally impossible for a framework author to know
what will happen in all circumstances (“X is executed, then Y, then X
again.. a train leaves Chicago at 50 mph... ”). And even if given the
gift of omniscience for some limited set of circumstances, the
framework author almost certainly does not have the double-execution
anomaly in mind when coding new features. He’s thinking of adding a
feature, not protecting against problems that might be caused by the
1% multiple execution case. However, any 1% case may cause 50% of
your pain on a project, so it’d be nice if it never occured.

Responsible microframeworks actually offer a back-door way around the
problem. They allow you to disuse decorator based configuration
entirely. Instead of requiring you to do the following:

	1
2
3
4
5
6
7
8

	gh = Groundhog('myapp', 'seekrit')

@gh.route('/foo/')
def foo():
 return 'foo'

if __name__ == '__main__':
 gh.run()

They allow you to disuse the decorator syntax and go
almost-all-imperative:

	1
2
3
4
5
6
7
8

	def foo():
 return 'foo'

gh = Groundhog('myapp', 'seekrit')

if __name__ == '__main__':
 gh.add_route(foo, '/foo/')
 gh.run()

This is a generic mode of operation that is encouraged in the Pyramid
documentation. Some existing microframeworks (Flask, in particular)
allow for it as well. None (other than Pyramid) encourage it. If
you never expect your application to grow beyond two or three or four
or ten modules, it probably doesn’t matter very much which mode you
use. If your application grows large, however, imperative
configuration can provide better predictability.

Note

Astute readers may notice that Pyramid has configuration decorators
too. Aha! Don’t these decorators have the same problems? No.
These decorators do not populate an external Python module when they
are executed. They only mutate the functions (and classes and
methods) they’re attached to. These mutations must later be found
during a “scan” process that has a predictable and structured import
phase. Module-localized mutation is actually the best-case
circumstance for double-imports; if a module only mutates itself and
its contents at import time, if it is imported twice, that’s OK,
because each decorator invocation will always be mutating an
independent copy of the object its attached to, not a shared
resource like a registry in another module. This has the effect
that double-registrations will never be performed.

Routes (Usually) Need Relative Ordering

Consider the following simple Groundhog [http://bfg.repoze.org/videos#groundhog1] application:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from groundhog import Groundhog
app = Groundhog('myapp', 'seekrit')

app.route('/admin')
def admin():
 return '<html>admin page</html>'

app.route('/:action')
def action():
 if action == 'add':
 return '<html>add</html>'
 if action == 'delete':
 return '<html>delete</html>'
 return app.abort(404)

if __name__ == '__main__':
 app.run()

If you run this application and visit the URL /admin, you will see
“admin” page. This is the intended result. However, what if you
rearrange the order of the function definitions in the file?

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from groundhog import Groundhog
app = Groundhog('myapp', 'seekrit')

app.route('/:action')
def action():
 if action == 'add':
 return '<html>add</html>'
 if action == 'delete':
 return '<html>delete</html>'
 return app.abort(404)

app.route('/admin')
def admin():
 return '<html>admin page</html>'

if __name__ == '__main__':
 app.run()

If you run this application and visit the URL /admin, you will now
be returned a 404 error. This is probably not what you intended. The
reason you see a 404 error when you rearrange function definition
ordering is that routing declarations expressed via our
microframework’s routing decorators have an ordering, and that
ordering matters.

In the first case, where we achieved the expected result, we first
added a route with the pattern /admin, then we added a route with
the pattern /:action by virtue of adding routing patterns via
decorators at module scope. When a request with a PATH_INFO of
/admin enters our application, the web framework loops over each
of our application’s route patterns in the order in which they were
defined in our module. As a result, the view associated with the
/admin routing pattern will be invoked: it matches first. All is
right with the world.

In the second case, where we did not achieve the expected result, we
first added a route with the pattern /:action, then we added a
route with the pattern /admin. When a request with a
PATH_INFO of /admin enters our application, the web framework
loops over each of our application’s route patterns in the order in
which they were defined in our module. As a result, the view
associated with the /:action routing pattern will be invoked: it
matches first. A 404 error is raised. This is not what we wanted; it
just happened due to the order in which we defined our view functions.

You may be willing to maintain an ordering of your view functions
which reifies your routing policy. Your application may be small
enough where this will never cause an issue. If it becomes large
enough to matter, however, I don’t envy you. Maintaining that
ordering as your application grows larger will be difficult. At some
point, you will also need to start controlling import ordering as
well as function definition ordering. When your application grows
beyond the size of a single file, and when decorators are used to
register views, the non-__main__ modules which contain
configuration decorators must be imported somehow for their
configuration to be executed.

Does that make you a little
uncomfortable? It should, because Application Programmers Don’t Control The Module-Scope Codepath (Import-Time Side-Effects Are Evil).

“Stacked Object Proxies” Are Too Clever / Thread Locals Are A Nuisance

In another manifestation of “import fascination”, some microframeworks
use the import statement to get a handle to an object which is
not logically global:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from flask import request

@app.route('/login', methods=['POST', 'GET'])
def login():
 error = None
 if request.method == 'POST':
 if valid_login(request.form['username'],
 request.form['password']):
 return log_the_user_in(request.form['username'])
 else:
 error = 'Invalid username/password'
 # this is executed if the request method was GET or the
 # credentials were invalid

The Pylons 1.X [http://pylonshq.com] web framework uses a similar
strategy. It calls these things “Stacked Object Proxies”, so, for
purposes of this discussion, I’ll do so as well.

Import statements in Python (import foo, from bar import baz)
are most frequently performed to obtain a reference to an object
defined globally within an external Python module. However, in
“normal” programs, they are never used to obtain a reference to an
object that has a lifetime measured by the scope of the body of a
function. It would be absurd to try to import, for example, a
variable named i representing a loop counter defined in the body
of a function. For example, we’d never try to import i from the
code below:

	1
2
3

	def afunc():
 for i in range(10):
 print i

By its nature, the request object created as the result of a WSGI
server’s call into a long-lived web framework cannot be global,
because the lifetime of a single request will be much shorter than the
lifetime of the process running the framework. A request object
created by a web framework actually has more similarity to the i
loop counter in our example above than it has to any comparable
importable object defined in the Python standard library or in
“normal” library code.

However, systems which use stacked object proxies promote locally
scoped objects such as request out to module scope, for the
purpose of being able to offer users a “nice” spelling involving
import. They, for what I consider dubious reasons, would rather
present to their users the canonical way of getting at a request
as from framework import request instead of a saner from
myframework.threadlocals import get_request; request = get_request()
even though the latter is more explicit.

It would be most explicit if the microframeworks did not use thread
local variables at all. Pyramid view functions are passed a request
object; many of Pyramid’s APIs require that an explicit request object
be passed to them. It is possible to retrieve the current Pyramid
request as a threadlocal variable but it is a “in case of emergency,
break glass” type of activity. This explicitness makes Pyramid view
functions more easily unit testable, as you don’t need to rely on the
framework to manufacture suitable “dummy” request (and other
similarly-scoped) objects during test setup. It also makes them more
likely to work on arbitrary systems, such as async servers that do no
monkeypatching.

Explicitly WSGI

Some microframeworks offer a run() method of an application object
that executes a default server configuration for easy execution.

Pyramid doesn’t currently try to hide the fact that its router is a
WSGI application behind a convenience run() API. It just tells
people to import a WSGI server and use it to serve up their Pyramid
application as per the documentation of that WSGI server.

The extra lines saved by abstracting away the serving step behind
run() seem to have driven dubious second-order decisions related
to API in some microframeworks. For example, Bottle contains a
ServerAdapter subclass for each type of WSGI server it supports
via its app.run() mechanism. This means that there exists code in
bottle.py that depends on the following modules: wsgiref,
flup, paste, cherrypy, fapws, tornado,
google.appengine, twisted.web, diesel, gevent,
gunicorn, eventlet, and rocket. You choose the kind of
server you want to run by passing its name into the run method.
In theory, this sounds great: I can try Bottle out on gunicorn
just by passing in a name! However, to fully test Bottle, all of
these third-party systems must be installed and functional; the Bottle
developers must monitor changes to each of these packages and make
sure their code still interfaces properly with them. This expands the
packages required for testing greatly; this is a lot of
requirements. It is likely difficult to fully automate these tests
due to requirements conflicts and build issues.

As a result, for single-file apps, we currently don’t bother to offer
a run() shortcut; we tell folks to import their WSGI server of
choice and run it “by hand”. For the people who want a server
abstraction layer, we suggest that they use PasteDeploy. In
PasteDeploy-based systems, the onus for making sure that the server
can interface with a WSGI application is placed on the server
developer, not the web framework developer, making it more likely to
be timely and correct.

Wrapping Up

Here’s a diagrammed version of the simplest pyramid application,
where comments take into account what we’ve discussed in the
Microframeworks Have Smaller Hello World Programs section.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from webob import Response # explicit response objects, no TL
from paste.httpserver import serve # explicitly WSGI

def hello_world(request): # accepts a request; no request thread local reqd
 # explicit response object means no response threadlocal
 return Response('Hello world!')

if __name__ == '__main__':
 from pyramid.config import Configurator
 config = Configurator() # no global application object.
 config.add_view(hello_world) # explicit non-decorator registration
 app = config.make_wsgi_app() # explicitly WSGI
 serve(app, host='0.0.0.0') # explicitly WSGI

Other Challenges

Other challenges are encouraged to be sent to the Pylons-devel [http://groups.google.com/group/pylons-devel] maillist. We’ll try to address
them by considering a design change, or at very least via exposition here.

 Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

_static/minus.png

_images/project.png
The Pyramid Web Application Development Framework

806
<[>] (1] [£]8 i rocamost 5543/ cl(a

Pyramid

Welcome to MyProject, an application generated by
the Pyramid web application development framework.

Search documentation ~ Pyramid links
G| Pylons Website
Narrative Documentation
APL Documentation

Tutorals
Change History

Sample Applications
Support and Development
1RC Channel

search.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

_static/file.png

latexindex.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

The Pyramid Web Application Framework

Front Matter

		Copyright, Trademarks, and Attributions

		Typographical Conventions

		Author Introduction

Narrative Documentation

		Pyramid Introduction

		Installing Pyramid

		Application Configuration

		Creating Your First Pyramid Application

		Creating a Pyramid Project

		Resource Location and View Lookup

		URL Dispatch

		Traversal

		Views

		Renderers

		Templates

		Resources

		Static Assets

		Request and Response Objects

		Session Objects

		Security

		Combining Traversal and URL Dispatch

		Internationalization and Localization

		Virtual Hosting

		Using Events

		Environment Variables and .ini File Settings

		Unit, Integration, and Functional Testing

		Using Hooks

		Declarative Configuration

		Extending An Existing Pyramid Application

		Assets

		Request Processing

		Startup

		Thread Locals

		Using the Zope Component Architecture in Pyramid

Tutorials

		Converting a repoze.bfg Application to Pyramid

		ZODB + Traversal Wiki Tutorial (For Developers Familiar with Zope)

		SQLAlchemy + URL Dispatch Wiki Tutorial (For Developers Familiar with Pylons 1)

		Running Pyramid on Google’s App Engine

		Running a Pyramid Application under mod_wsgi

		Using ZODB with ZEO

		Using repoze.catalog Within Pyramid

API Reference

		pyramid.authorization

		pyramid.authentication

		pyramid.chameleon_text

		pyramid.chameleon_zpt

		pyramid.config

		pyramid.events

		pyramid.exceptions

		pyramid.httpexceptions

		pyramid.i18n

		pyramid.interfaces

		pyramid.location

		pyramid.paster

		pyramid.registry

		pyramid.renderers

		pyramid.request

		pyramid.response

		pyramid.router

		pyramid.scripting

		pyramid.security

		pyramid.settings

		pyramid.testing

		pyramid.threadlocal

		pyramid.traversal

		pyramid.url

		pyramid.view

		pyramid.wsgi

ZCML Directive Reference

		aclauthorizationpolicy

		adapter

		authtktauthenticationpolicy

		asset

		configure

		default_permission

		forbidden

		include

		notfound

		remoteuserauthenticationpolicy

		renderer

		repozewho1authenticationpolicy

		route

		scan

		static

		subscriber

		utility

		view

Glossary and Index

		Glossary

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

_images/router.png
e Pyramid” Router

View callable
found?

Current user has

authorization to

invoke the view
callable?

genindex.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

 Index

 _ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | Z

_

 		
 		__call__() (IRoutePregenerator method)

 		
 		(ISessionFactory method)

 		__contains__() (IBeforeRender method)

 		
 		(ISession method)

 		__delitem__() (ISession method)

 		__getitem__() (IBeforeRender method)

 		
 		(ISession method)

 		
 		__init__.py

 		__iter__() (ISession method)

 		__len__() (ISession method)

 		__setitem__() (IBeforeRender method)

 		
 		(ISession method)

A

 		
 		absolute_asset_spec() (Configurator method)

 		accept (Request attribute)

 		accept_charset (Request attribute)

 		accept_encoding (Request attribute)

 		accept_language (Request attribute)

 		accept_ranges (Response attribute)

 		access control entry

 		access control list

 		ACE, [1]

 		
 		(special)

 		ACL, [1]

 		ACL inheritance

 		ACLAllowed (class in pyramid.security)

 		ACLAuthorizationPolicy (class in pyramid.authorization)

 		ACLDenied (class in pyramid.security)

 		action() (Configurator method)

 		activating

 		
 		translation

 		add_finished_callback() (Request method)

 		add_handler() (Configurator method)

 		add_renderer() (Configurator method)

 		add_response_callback() (Request method)

 		add_route

 		add_route() (Configurator method)

 		add_settings() (Configurator method)

 		add_static_view

 		add_static_view() (Configurator method)

 		add_subscriber() (Configurator method)

 		add_translation_dirs() (Configurator method)

 		add_view

 		add_view() (Configurator method)

 		age (Response attribute)

 		
 		Agendaless Consulting, [1], [2]

 		Akkerman, Wichert

 		ALL_PERMISSIONS (in module pyramid.security)

 		Allow (in module pyramid.security)

 		allow (Response attribute)

 		Allowed (class in pyramid.security)

 		app (IApplicationCreated attribute)

 		app_iter (Response attribute)

 		app_iter_range() (Response method)

 		append_slash_notfound_view() (in module pyramid.view)

 		AppendSlashNotFoundViewFactory (class in pyramid.view)

 		application configuration

 		application registry, [1]

 		application_url (Request attribute)

 		ApplicationCreated (class in pyramid.events)

 		asbool() (in module pyramid.settings)

 		assert_() (DummyTemplateRenderer method)

 		asset

 		
 		ZCML directive

 		asset specification

 		assets

 		
 		overriding

 		Authenticated (in module pyramid.security)

 		authenticated_userid() (in module pyramid.security)

 		authentication

 		authentication policy

 		
 		ZCML directive

 		authentication policy (creating)

 		authorization

 		
 		(Request attribute)

 		authorization policy, [1]

 		
 		ZCML directive

 		authorization policy (creating)

 		AuthTktAuthenticationPolicy (class in pyramid.authentication)

 		automatic reloading of templates

B

 		
 		Babel, [1], [2]

 		
 		message extractors

 		Beaker

 		BeforeRender (class in pyramid.events)

 		begin() (Configurator method)

 		bfg2pyramid

 		Bicking, Ian, [1]

 		blank() (pyramid.request.Request class method)

 		
 		body (Request attribute)

 		
 		(Response attribute)

 		body_file (Request attribute)

 		
 		(Response attribute)

 		book audience

 		book content overview

 		Borch, Malthe

 		Brandl, Georg

 		built-in renderers

C

 		
 		cache_control (Request attribute)

 		
 		(Response attribute)

 		call_application() (Request method)

 		chameleon

 		
 		renderer

 		Chameleon

 		
 		translation strings

 		Chameleon text templates

 		Chameleon ZPT macros

 		Chameleon ZPT templates

 		changed() (ISession method)

 		charset (Request attribute)

 		
 		(Response attribute)

 		cleanUp() (in module pyramid.testing)

 		clear() (ISession method)

 		clone() (DummyResource method)

 		code scanning

 		commit() (Configurator method)

 		compiling

 		
 		message catalog

 		conditional_response_app() (Response method)

 		configuration declaration

 		configuration decoration, [1]

 		ConfigurationError (class in pyramid.exceptions)

 		configurator

 		Configurator

 		
 		(class in pyramid.config)

 		
 		Configurator testing API

 		container resources

 		content_disposition (Response attribute)

 		content_encoding (Response attribute)

 		content_language (Response attribute)

 		content_length (Request attribute)

 		
 		(Response attribute)

 		content_location (Response attribute)

 		content_md5 (Response attribute)

 		content_range (Response attribute)

 		content_type (Request attribute)

 		
 		(Response attribute)

 		content_type_params (Response attribute)

 		context, [1]

 		
 		(Request attribute)

 		ContextFound (class in pyramid.events)

 		converting a BFG app

 		cookies (Request attribute)

 		copy() (Request method)

 		
 		(Response method)

 		copy_body() (Request method)

 		copy_get() (Request method)

 		CPython

 		created (ISession attribute)

 		creating a project

D

 		
 		date (Request attribute)

 		
 		(Response attribute)

 		date and currency formatting (i18n)

 		de la Guardia, Carlos

 		debug settings

 		debug_all

 		debug_authorization

 		debug_notfound

 		debugging authorization failures

 		debugging not found errors

 		declarative configuration, [1]

 		decorator

 		Default Locale Name

 		default permission

 		default view

 		Default view

 		default_locale_name, [1]

 		
 		default_locale_negotiator() (in module pyramid.i18n)

 		delete_cookie() (Response method)

 		Denied (class in pyramid.security)

 		Deny (in module pyramid.security)

 		DENY_ALL (in module pyramid.security)

 		Deployment settings

 		derive_view() (Configurator method)

 		development install

 		distribution

 		Django, [1], [2]

 		domain

 		
 		translation

 		domain model

 		dotted Python name

 		DummyRequest (class in pyramid.testing)

 		DummyResource (class in pyramid.testing)

 		DummyTemplateRenderer (class in pyramid.testing)

E

 		
 		effective_principals() (in module pyramid.security)

 		encode_content() (Response method)

 		end() (Configurator method)

 		entry point

 		environ (Response attribute)

 		environment variables, [1]

 		etag (Response attribute)

 		event, [1]

 		Everitt, Paul

 		
 		Everyone (in module pyramid.security)

 		exception (Request attribute)

 		Exception view

 		exception views

 		expires (Response attribute)

 		extending an existing application

 		extensible application

 		extracting

 		
 		messages

F

 		
 		factory (IRoute attribute)

 		find_interface() (in module pyramid.traversal)

 		find_resource() (in module pyramid.traversal)

 		find_root() (in module pyramid.traversal)

 		finished callback

 		Forbidden (class in pyramid.exceptions)

 		Forbidden view

 		forbidden view, [1]

 		
 		forget() (in module pyramid.security)

 		forms, views, and unicode

 		framework

 		frameworks vs. libraries

 		from_file() (pyramid.request.Request class method)

 		
 		(pyramid.response.Response class method)

 		Fulton, Jim

 		functional testing

 		functional tests

G

 		
 		generate() (IRoute method)

 		generating route URLs

 		generating static asset urls

 		Genshi

 		GET (Request attribute)

 		get() (BeforeRender method)

 		
 		(IBeforeRender method)

 		(ISession method)

 		get_app() (in module pyramid.paster)

 		get_current_registry, [1], [2]

 		get_current_registry() (in module pyramid.threadlocal)

 		get_current_request

 		get_current_request() (in module pyramid.threadlocal)

 		get_locale_name

 		get_locale_name() (in module pyramid.i18n)

 		get_localizer

 		
 		get_localizer() (in module pyramid.i18n)

 		get_renderer() (in module pyramid.renderers)

 		get_response() (Request method)

 		get_root() (in module pyramid.scripting)

 		get_settings() (Configurator method)

 		
 		(in module pyramid.settings)

 		get_template() (in module pyramid.chameleon_text)

 		
 		(in module pyramid.chameleon_zpt)

 		getGlobalSiteManager, [1]

 		getSiteManager, [1], [2]

 		Gettext

 		gettext

 		getUtility, [1]

 		Google App Engine

 		Grok

H

 		
 		Hardwick, Nat

 		has_permission() (in module pyramid.security)

 		Hathaway, Shane

 		headerlist (Response attribute)

 		headers (Request attribute)

 		
 		(Response attribute)

 		helloworld (declarative)

 		
 		(imperative)

 		Holth, Daniel

 		hook_zca (configurator method)

 		hook_zca() (Configurator method)

 		host (Request attribute)

 		host_url (Request attribute)

 		http redirect (from a view)

 		HTTPAccepted (class in pyramid.httpexceptions)

 		HTTPBadGateway (class in pyramid.httpexceptions)

 		HTTPBadRequest (class in pyramid.httpexceptions)

 		HTTPClientError (class in pyramid.httpexceptions)

 		HTTPConflict (class in pyramid.httpexceptions)

 		HTTPCreated (class in pyramid.httpexceptions)

 		HTTPError (class in pyramid.httpexceptions)

 		HTTPException (class in pyramid.httpexceptions)

 		HTTPExpectationFailed (class in pyramid.httpexceptions)

 		HTTPForbidden (class in pyramid.httpexceptions)

 		HTTPFound (class in pyramid.httpexceptions)

 		HTTPGatewayTimeout (class in pyramid.httpexceptions)

 		HTTPGone (class in pyramid.httpexceptions)

 		HTTPInternalServerError (class in pyramid.httpexceptions)

 		HTTPLengthRequired (class in pyramid.httpexceptions)

 		HTTPMethodNotAllowed (class in pyramid.httpexceptions)

 		
 		HTTPMovedPermanently (class in pyramid.httpexceptions)

 		HTTPMultipleChoices (class in pyramid.httpexceptions)

 		HTTPNoContent (class in pyramid.httpexceptions)

 		HTTPNonAuthoritativeInformation (class in pyramid.httpexceptions)

 		HTTPNotAcceptable (class in pyramid.httpexceptions)

 		HTTPNotFound (class in pyramid.httpexceptions)

 		HTTPNotImplemented (class in pyramid.httpexceptions)

 		HTTPNotModified (class in pyramid.httpexceptions)

 		HTTPOk (class in pyramid.httpexceptions)

 		HTTPPartialContent (class in pyramid.httpexceptions)

 		HTTPPaymentRequired (class in pyramid.httpexceptions)

 		HTTPPreconditionFailed (class in pyramid.httpexceptions)

 		HTTPProxyAuthenticationRequired (class in pyramid.httpexceptions)

 		HTTPRedirection (class in pyramid.httpexceptions)

 		HTTPRequestEntityTooLarge (class in pyramid.httpexceptions)

 		HTTPRequestRangeNotSatisfiable (class in pyramid.httpexceptions)

 		HTTPRequestTimeout (class in pyramid.httpexceptions)

 		HTTPRequestURITooLong (class in pyramid.httpexceptions)

 		HTTPResetContent (class in pyramid.httpexceptions)

 		HTTPSeeOther (class in pyramid.httpexceptions)

 		HTTPServerError (class in pyramid.httpexceptions)

 		HTTPServiceUnavailable (class in pyramid.httpexceptions)

 		HTTPTemporaryRedirect (class in pyramid.httpexceptions)

 		HTTPUnauthorized (class in pyramid.httpexceptions)

 		HTTPUnsupportedMediaType (class in pyramid.httpexceptions)

 		HTTPUseProxy (class in pyramid.httpexceptions)

 		HTTPVersionNotSupported (class in pyramid.httpexceptions)

I

 		
 		i18n

 		IApplicationCreated (interface in pyramid.interfaces)

 		IBeforeRender (interface in pyramid.interfaces)

 		IContextFound (interface in pyramid.interfaces)

 		IExceptionResponse (interface in pyramid.interfaces)

 		if_match (Request attribute)

 		if_modified_since (Request attribute)

 		if_none_match (Request attribute)

 		if_range (Request attribute)

 		if_unmodified_since (Request attribute)

 		imperative configuration, [1], [2]

 		implementation() (ITemplateRenderer method)

 		include() (Configurator method)

 		INewRequest

 		
 		(interface in pyramid.interfaces)

 		INewResponse

 		
 		(interface in pyramid.interfaces)

 		ini file

 		ini file settings

 		initializing

 		
 		message catalog

 		inside() (in module pyramid.location)

 		install preparation

 		installing on Google App Engine

 		installing on UNIX

 		
 		installing on Windows

 		integration testing

 		integration tests

 		interactive shell

 		interface

 		internationalization

 		Internationalization

 		internationalization (of templates)

 		invalidate() (ISession method)

 		IPython

 		IRendererInfo (interface in pyramid.interfaces)

 		IRoute (interface in pyramid.interfaces)

 		IRoutePregenerator (interface in pyramid.interfaces)

 		is_response() (in module pyramid.view)

 		is_xhr (Request attribute)

 		ISession (interface in pyramid.interfaces)

 		ISessionFactory (interface in pyramid.interfaces)

 		ITemplateRenderer (interface in pyramid.interfaces)

 		items() (DummyResource method)

 		
 		(ISession method)

 		iteritems() (ISession method)

 		iterkeys() (ISession method)

 		itervalues() (ISession method)

J

 		
 		Jinja2, [1]

 		JSON

 		
 		renderer

 		
 		Jython

K

 		
 		keys() (DummyResource method)

 		
 		(ISession method)

 		
 		Koym, Todd

L

 		
 		l10n

 		last_modified (Response attribute)

 		leaf resources

 		lineage

 		lineage() (in module pyramid.location)

 		load_zcml() (Configurator method)

 		locale

 		
 		negotiator

 		locale name

 		Locale Name

 		
 		Locale Negotiator

 		locale_name (Localizer attribute)

 		localization

 		Localization

 		localization deployment settings

 		localizer

 		Localizer

 		
 		(class in pyramid.i18n)

 		location

 		
 		(Response attribute)

 		location-aware

 		
 		resource

 		security

M

 		
 		make_app() (in module pyramid.router)

 		make_body_seekable() (Request method)

 		make_wsgi_app

 		make_wsgi_app() (Configurator method)

 		Mako, [1]

 		mako

 		
 		renderer

 		match() (IRoute method)

 		matchdict

 		
 		(Request attribute)

 		matched_route

 		
 		(Request attribute)

 		matching the root URL

 		max_forwards (Request attribute)

 		maybe_dotted() (Configurator method)

 		md5_etag() (Response method)

 		merge_cookies() (Response method)

 		Message Catalog

 		
 		message catalog

 		
 		compiling

 		initializing

 		updating

 		Message Identifier

 		message identifier

 		messages

 		
 		extracting

 		METAL

 		method (Request attribute)

 		middleware

 		mod_wsgi, [1]

 		model_url() (Request method)

 		module

 		Moroz, Tom

 		msgid

 		
 		translation

 		multidict

 		
 		(WebOb)

 		MVC

N

 		
 		name (IRendererInfo attribute)

 		
 		(IRoute attribute)

 		negotiate_locale_name

 		negotiate_locale_name() (in module pyramid.i18n)

 		negotiator

 		
 		locale

 		new (ISession attribute)

 		NewRequest

 		
 		(class in pyramid.events)

 		
 		NewResponse

 		
 		(class in pyramid.events)

 		not found error (debugging)

 		not found view

 		Not Found view

 		NotFound (class in pyramid.exceptions)

O

 		
 		object tree, [1]

 		Oram, Simon

 		override_asset

 		
 		override_asset() (Configurator method)

 		overriding

 		
 		assets

 		resources

 		routes

 		views

P

 		
 		package, [1]

 		
 		(IRendererInfo attribute)

 		params (Request attribute)

 		Paste

 		PasteDeploy, [1]

 		PasteDeploy settings

 		paster pshell

 		paster serve

 		paster templates

 		path (Request attribute)

 		path_info (Request attribute)

 		path_info_peek() (Request method)

 		path_info_pop() (Request method)

 		path_qs (Request attribute)

 		path_url (Request attribute)

 		pattern (IRoute attribute)

 		permission

 		permission names

 		permissions

 		Peters, Tim

 		pipeline

 		pkg_resources

 		pluralize() (Localizer method)

 		pluralizing (i18n)

 		pop() (ISession method)

 		popitem() (ISession method)

 		POST (Request attribute)

 		postvars (Request attribute)

 		pragma (Request attribute)

 		
 		(Response attribute)

 		predicate

 		predicates (IRoute attribute)

 		pregenerator

 		
 		(IRoute attribute)

 		principal, [1]

 		principal names

 		principals_allowed_by_permission() (in module pyramid.security)

 		project, [1]

 		project structure

 		protecting views

 		Pylons, [1], [2], [3]

 		pylons_basic paster template

 		
 		pylons_minimal paster template

 		pylons_sqla paster template

 		PyPI

 		pyramid and other frameworks

 		pyramid genesis

 		pyramid.authentication (module)

 		pyramid.authorization (module)

 		pyramid.chameleon_text (module)

 		pyramid.chameleon_zpt (module)

 		pyramid.config (module)

 		pyramid.events (module)

 		pyramid.exceptions (module)

 		pyramid.httpexceptions (module)

 		pyramid.i18n (module)

 		pyramid.interfaces (module)

 		pyramid.location (module)

 		pyramid.paster (module)

 		pyramid.registry (module)

 		pyramid.renderers (module)

 		pyramid.request (module)

 		pyramid.response (module)

 		pyramid.router (module)

 		pyramid.scripting (module)

 		pyramid.security (module)

 		pyramid.session (module)

 		pyramid.settings (module)

 		pyramid.testing

 		
 		(module)

 		pyramid.threadlocal (module)

 		pyramid.traversal (module)

 		pyramid.url (module)

 		pyramid.view (module)

 		pyramid.wsgi (module)

 		pyramid_alchemy paster template

 		pyramid_beaker

 		pyramid_routesalchemy paster template

 		pyramid_starter paster template

 		pyramid_starter_zcml paster template

 		pyramid_zodb paster template

 		Python

Q

 		
 		query_string (Request attribute)

 		queryvars (Request attribute)

 		
 		quote_path_segment() (in module pyramid.traversal)

R

 		
 		range (Request attribute)

 		redirecting to slash-appended routes

 		referer (Request attribute)

 		referrer (Request attribute)

 		registerAdapter() (in module pyramid.testing)

 		registerDummySecurityPolicy() (in module pyramid.testing)

 		registerEventListener() (in module pyramid.testing)

 		registerResources() (in module pyramid.testing)

 		registerRoute() (in module pyramid.testing)

 		registerSettings() (in module pyramid.testing)

 		registerSubscriber() (in module pyramid.testing)

 		registerTemplateRenderer() (in module pyramid.testing)

 		registerUtility() (in module pyramid.testing)

 		registerView() (in module pyramid.testing)

 		Registry (class in pyramid.registry)

 		registry (Configurator attribute)

 		
 		(IRendererInfo attribute)

 		(Request attribute)

 		relative_url() (Request method)

 		reload, [1]

 		reload settings

 		reload_all

 		reload_assets, [1]

 		reload_templates

 		remember() (in module pyramid.security)

 		remote_addr (Request attribute)

 		remote_user (Request attribute)

 		RemoteUserAuthenticationPolicy (class in pyramid.authentication)

 		remove_conditional_headers() (Request method)

 		render() (in module pyramid.renderers)

 		render_template() (in module pyramid.chameleon_text)

 		
 		(in module pyramid.chameleon_zpt)

 		render_template_to_response() (in module pyramid.chameleon_text)

 		
 		(in module pyramid.chameleon_zpt)

 		render_to_response() (in module pyramid.renderers)

 		render_view() (in module pyramid.view)

 		render_view_to_iterable() (in module pyramid.view)

 		render_view_to_response() (in module pyramid.view)

 		renderer, [1]

 		
 		JSON

 		chameleon

 		mako

 		string

 		renderer (adding)

 		
 		(template)

 		renderer factory

 		renderer globals

 		renderer response headers

 		renderers (built-in)

 		Repoze

 		repoze namespace package

 		repoze.bfg genesis

 		repoze.catalog

 		repoze.lemonade

 		repoze.who

 		repoze.workflow

 		repoze.zope2

 		RepozeWho1AuthenticationPolicy (class in pyramid.authentication)

 		request, [1]

 		
 		(and unicode)

 		Request (class in pyramid.request)

 		request (IContextFound attribute)

 		
 		(INewRequest attribute)

 		(INewResponse attribute)

 		(Response attribute)

 		
 		request attributes

 		
 		(special)

 		request factory

 		request methods

 		request object

 		request processing

 		request type

 		request URLs

 		request.registry

 		RequestClass (Response attribute)

 		resource

 		
 		location-aware

 		resource API functions

 		resource constructor

 		resource interfaces, [1]

 		Resource Location

 		resource location

 		resource tree, [1], [2]

 		resource_path() (in module pyramid.traversal)

 		resource_path_tuple() (in module pyramid.traversal)

 		resource_url() (in module pyramid.url)

 		
 		(Request method)

 		resources

 		
 		overriding

 		resources.py

 		response, [1]

 		Response (class in pyramid.response)

 		response (creating)

 		
 		(INewResponse attribute)

 		response callback

 		response exceptions

 		response headers

 		
 		(from a renderer)

 		response object

 		ResponseClass (Request attribute)

 		reStructuredText

 		retry_after (Response attribute)

 		root

 		
 		(Request attribute)

 		root factory, [1]

 		root url (matching)

 		Rossi, Chris

 		route

 		route configuration

 		
 		view callable

 		route factory

 		route ordering

 		route path pattern syntax

 		route predicate

 		route subpath

 		route URLs

 		route_path() (in module pyramid.url)

 		
 		(Request method)

 		route_url() (in module pyramid.url)

 		
 		(Request method)

 		router, [1]

 		Routes

 		routes

 		
 		overriding

 		routes mapper

 		running an application

 		running tests

S

 		
 		sample template

 		Sawyers, Andrew

 		scan

 		scan() (Configurator method)

 		scheme (Request attribute)

 		script_name (Request attribute)

 		Seaver, Tres

 		security

 		
 		URL dispatch

 		location-aware

 		view

 		server (Response attribute)

 		server_name (Request attribute)

 		server_port (Request attribute)

 		session, [1]

 		
 		(Request attribute), [1]

 		session factory, [1]

 		set_cookie() (Response method)

 		set_default_permission() (Configurator method)

 		set_forbidden_view() (Configurator method)

 		set_locale_negotiator() (Configurator method)

 		set_notfound_view() (Configurator method)

 		set_renderer_globals_factory() (Configurator method)

 		set_request_factory() (Configurator method)

 		set_session_factory() (Configurator method)

 		setdefault() (ISession method)

 		settings

 		
 		(IRendererInfo attribute)

 		(Registry attribute)

 		setUp() (in module pyramid.testing)

 		setup.py

 		setup.py develop

 		setup_registry() (Configurator method)

 		
 		setuptools

 		signed_deserialize() (in module pyramid.session)

 		signed_serialize() (in module pyramid.session)

 		special ACE

 		special permission names

 		SQLAlchemy

 		startup

 		startup process

 		static (in module pyramid.view)

 		static asset urls

 		static assets view

 		static resource

 		
 		view zcml

 		static_url() (in module pyramid.url)

 		
 		(Request method)

 		status (Response attribute)

 		status_code (Response attribute)

 		status_int (Response attribute)

 		status_map (in module pyramid.httpexceptions)

 		str_cookies (Request attribute)

 		str_GET (Request attribute)

 		str_params (Request attribute)

 		str_POST (Request attribute)

 		str_postvars (Request attribute)

 		str_queryvars (Request attribute)

 		string

 		
 		renderer

 		subpath, [1]

 		
 		(Request attribute)

 		(route)

 		subscriber, [1]

 		
 		ZCML directive

 		subscriber() (in module pyramid.events)

T

 		
 		tearDown() (in module pyramid.testing)

 		template

 		template automatic reload

 		template internationalization

 		template renderer side effects

 		template renderers

 		template system bindings

 		templates used as renderers

 		templates used directly

 		test setup

 		test tear down

 		testing_add_renderer() (Configurator method)

 		testing_add_subscriber() (Configurator method)

 		testing_resources() (Configurator method)

 		testing_securitypolicy() (Configurator method)

 		tests (running)

 		tests.py

 		thread local

 		thread locals

 		tmpl_context (Request attribute), [1]

 		translate() (Localizer method)

 		translating (i18n)

 		translation

 		
 		activating

 		domain

 		msgid

 		
 		translation directories

 		translation directory

 		Translation Directory

 		Translation Domain

 		translation string

 		Translation String

 		translation string factory

 		translation strings

 		
 		Chameleon

 		TranslationString (class in pyramid.i18n)

 		TranslationStringFactory (class in pyramid.i18n)

 		Translator

 		traversal

 		traversal algorithm

 		traversal details

 		traversal examples

 		traversal overview

 		traversal tree, [1]

 		traversal_path() (in module pyramid.traversal)

 		traverse() (in module pyramid.traversal)

 		traversed (Request attribute)

 		traverser

 		type (IRendererInfo attribute)

U

 		
 		ubody (Response attribute)

 		UnencryptedCookieSessionFactoryConfig() (in module pyramid.session)

 		unhook_zca() (Configurator method)

 		unicode (and the request)

 		unicode, views, and forms

 		unicode_body (Response attribute)

 		unit testing

 		unittest

 		unset_cookie() (Response method)

 		upath_info (Request attribute)

 		update() (BeforeRender method)

 		
 		(IBeforeRender method)

 		(ISession method)

 		
 		updating

 		
 		message catalog

 		url (Request attribute)

 		URL dispatch, [1]

 		
 		security

 		url generation (traversal)

 		url generator

 		urlargs (Request attribute)

 		URLDecodeError (class in pyramid.exceptions)

 		urlencode() (in module pyramid.url)

 		urlvars (Request attribute)

 		uscript_name (Request attribute)

 		user_agent (Request attribute)

V

 		
 		values() (DummyResource method)

 		
 		(ISession method)

 		van Rossum, Guido

 		vary (Response attribute)

 		Venusian

 		view

 		
 		security

 		zcml static resource

 		view callable

 		view calling convention, [1], [2]

 		view class

 		view configuration, [1]

 		view exceptions

 		view function

 		View handler

 		view http redirect

 		View Lookup

 		view lookup, [1]

 		view name, [1]

 		
 		view predicate

 		view renderer

 		view response

 		view security

 		view_config

 		
 		(class in pyramid.view)

 		view_config decorator

 		view_execution_permitted() (in module pyramid.security)

 		view_name (Request attribute)

 		views

 		
 		overriding

 		views, forms, and unicode

 		virtual hosting

 		virtual root, [1]

 		virtual_root (Request attribute)

 		virtual_root() (in module pyramid.traversal)

 		virtual_root_path (Request attribute)

 		virtualenv, [1], [2]

W

 		
 		WebOb, [1]

 		WebTest

 		with_package() (Configurator method)

 		WSGI

 		
 		WSGI application

 		wsgiapp() (in module pyramid.wsgi)

 		wsgiapp2() (in module pyramid.wsgi)

 		www_authenticate (Response attribute)

Z

 		
 		ZCA

 		ZCA global API

 		ZCA global registry

 		zcml

 		
 		static resource, view

 		ZCML

 		ZCML conflict detection

 		ZCML declaration

 		ZCML directive

 		
 		asset

 		authentication policy

 		authorization policy

 		route

 		subscriber

 		ZCML granularity

 		ZCML inclusion

 		ZCML view configuration

 		
 		ZEO

 		ZODB

 		Zope, [1], [2]

 		Zope 2

 		Zope 3

 		Zope Component Architecture, [1]

 		Zope ZCML directives

 		zope.component

 		ZPT

 		ZPT macros

 		ZPT templates (Chameleon)

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

py-modindex.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

 Python Module Index

 p

 				 		

 				[bookmark: cap-p]
 p		

 		[image: -]
 		
 pyramid		

 		
 		
 pyramid.authentication		

 		
 		
 pyramid.authorization		

 		
 		
 pyramid.chameleon_text		

 		
 		
 pyramid.chameleon_zpt		

 		
 		
 pyramid.config		

 		
 		
 pyramid.events		

 		
 		
 pyramid.exceptions		

 		
 		
 pyramid.httpexceptions		

 		
 		
 pyramid.i18n		

 		
 		
 pyramid.interfaces		

 		
 		
 pyramid.location		

 		
 		
 pyramid.paster		

 		
 		
 pyramid.registry		

 		
 		
 pyramid.renderers		

 		
 		
 pyramid.request		

 		
 		
 pyramid.response		

 		
 		
 pyramid.router		

 		
 		
 pyramid.scripting		

 		
 		
 pyramid.security		

 		
 		
 pyramid.session		

 		
 		
 pyramid.settings		

 		
 		
 pyramid.testing		

 		
 		
 pyramid.threadlocal		

 		
 		
 pyramid.traversal		

 		
 		
 pyramid.url		

 		
 		
 pyramid.view		

 		
 		
 pyramid.wsgi		

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

foreword.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

Foreword

A Foreword By Paul Everitt

Paul Everitt is a principal at Agendaless Consulting.
Before his time at Agendaless, he was the co-founder of Digital
Creations, which later became Zope Corporation. He has been
a widely respected member of the Python community since 1994.

Fortunate.

As I reflect upon the BFG web framework and this book by Chris to
document it, I keep coming back to the same word. Certainly the
conventional wisdom is clear: “Don’t we have too many web frameworks,
paired with outdated books?” Yes we do, but to the contrary and for
that very reason, we are fortunate to have this book and this
framework.

Chris McDonough first came to work with us at Digital Creations almost
a decade ago, just after there existed a Zope. We were all pioneers:
the first open source application server, one of the first open source
web companies to get serious investment, and entrants in nearly every
book and article about the open source space. Zope wasn’t just a
unique business model, though. It really was, as quoted at the time,
one of the places where open source delivered fresh ideas in design
and architecture.

Then a decade happened. Bubbles burst and the new new thing became
the old new thing, many times in succession. All of us changed jobs,
worked on a variety of endeavors, and big dreams yielded to small
realities. Somehow, though the trajectory was unforeseen, we have
orbited back to the same spot. Older, wiser, but with similar ideas
and familiar faces. Back to dream again.

We are fortunate to have BFG. It really does carve out a unique spot
in the Python web frameworks landscape. It permits the core good
ideas from Zope, while not requiring them. Moreover, the reason
you’ll love it has less to do with Zope and more to do with the old
fashioned stuff:

		A superb commitment to outstanding and constantly updated documentation

		An equal commitment to quality: test coverage, performance, and
documented compatibility

		Adult supervision and minimalism in the design, with “pay only for
what you eat” simplicity

For those of us from the Zope world, BFG permits our still-unique
ideas while teleporting us into the modern world of Python web
programming. It is fascinating, liberating, and rejuvenating. We are
able to cast off old sins and legitimately reclaim the title of best
damn game in town. Quite a coup: whether you considered Zope but
turned away, or became an adopter, you’ll find BFG the new new new
thing.

We are also fortunate to have this book. We never had such a resource
in Zope, even though we funded the writing of the first book a decade
ago. In retrospect, the answer is obvious: a second group tried to
retrofit a book onto code created by the first group. The true magic
in BFG is that the top-notch documentation is written by the same
person as the top-notch code, a person with equal passion and
commitment to both. Rarely are we so fortunate.

Which brings us to the final point. We are fortunate to have Chris.
I personally consider myself lucky to have worked with him and to be
his friend this past decade. He has changed my thinking in numerous
ways, fundamentally improving the way I view many things. He’s the
best person I know in the world of open source, and I get to be in
business with him. Fortunate indeed.

I very much hope you enjoy this book and get involved with BFG. We
use it for applications as small as “hello world” demos up to
scalable, re-usable, half-a-million-dollar projects. May you find
BFG, and the book, to be a high-quality, honest, and durable framework
choice for your work as well.

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

glossary.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

Glossary

		ACE

		An access control entry. An access control entry is one element
in an ACL. An access control entry is a three-tuple that
describes three things: an action (one of either Allow or
Deny), a principal (a string describing a user or
group), and a permission. For example the ACE, (Allow,
'bob', 'read') is a member of an ACL that indicates that the
principal bob is allowed the permission read against the
resource the ACL is attached to.

		ACL

		An access control list. An ACL is a sequence of ACE tuples.
An ACL is attached to a resource instance. An example of an ACL is [
(Allow, 'bob', 'read'), (Deny, 'fred', 'write')]. If an ACL is
attached to a resource instance, and that resource is findable via the
context resource, it will be consulted any active security policy to
determine wither a particular request can be fulfilled given the
authentication information in the request.

		Agendaless Consulting

		A consulting organization formed by Paul Everitt, Tres Seaver,
and Chris McDonough. See also http://agendaless.com .

		application registry

		A registry of configuration information consulted by
Pyramid while servicing an application. An application
registry maps resource types to views, as well as housing other
application-specific component registrations. Every
Pyramid application has one (and only one) application
registry.

		asset

		Any file contained within a Python package which is not
a Python source code file.

		asset specification

		A colon-delimited identifier for an asset. The colon
separates a Python package name from a package subpath.
For example, the asset specification
my.package:static/baz.css identifies the file named
baz.css in the static subdirectory of the my.package
Python package.

		authentication

		The act of determining that the credentials a user presents
during a particular request are “good”. Authentication in
Pyramid is performed via an authentication
policy.

		authentication policy

		An authentication policy in Pyramid terms is a bit of
code which has an API which determines the current
principal (or principals) associated with a request.

		authorization

		The act of determining whether a user can perform a specific action. In
pyramid terms, this means determining whether, for a given resource, any
principal (or principals) associated with the request have the
requisite permission to allow the request to continue.
Authorization in Pyramid is performed via its
authorization policy.

		authorization policy

		An authorization policy in Pyramid terms is a bit of
code which has an API which determines whether or not the
principals associated with the request can perform an action
associated with a permission, based on the information found on the
context resource.

		Babel

		A collection of tools [http://babel.edgewall.org/] for
internationalizing Python applications. Pyramid does
not depend on Babel to operate, but if Babel is installed,
additional locale functionality becomes available to your
application.

		Chameleon

		chameleon [http://chameleon.repoze.org] is an attribute
language template compiler which supports both the ZPT and
Genshi templating specifications. It is written and
maintained by Malthe Borch. It has several extensions, such as
the ability to use bracketed (Genshi-style) ${name} syntax,
even within ZPT. It is also much faster than the reference
implementations of both ZPT and Genshi. Pyramid offers
Chameleon templating out of the box in ZPT and text flavors.

		configuration declaration

		An individual method call made to an instance of a
Pyramid Configurator object which performs an
arbitrary action, such as registering a view configuration
(via the view method of the configurator) or route
configuration (via the route method of the configurator). A
set of configuration declarations is also usually implied via the
use of a ZCML declaration within an application, or a set
of configuration declarations might be performed by a scan
of code in a package.

		configuration decoration

		Metadata implying one or more configuration declaration
invocations. Often set by configuration Python decorator
attributes, such as pyramid.view.view_config, aka
@view_config.

		configurator

		An object used to do configuration declaration within an
application. The most common configurator is an instance of the
pyramid.config.Configurator class.

		context

		An resource in the resource tree that is found during traversal
or URL dispatch based on URL data; if it’s found via traversal,
it’s usually a resource object that is part of a resource tree;
if it’s found via URL dispatch, it’s a object manufactured on
behalf of the route’s “factory”. A context resource becomes the subject
of a view, and often has security information attached to
it. See the Traversal chapter and the
URL Dispatch chapter for more information about how a URL
is resolved to a context resource.

		CPython

		The C implementation of the Python language. This is the
reference implementation that most people refer to as simply
“Python”; Jython, Google’s App Engine, and PyPy [http://codespeak.net/pypy/dist/pypy/doc/] are examples of
non-C based Python implementations.

		declarative configuration

		The configuration mode in which you use ZCML to make
a set of configuration declaration statements.

		decorator

		A wrapper around a Python function or class which accepts the
function or class as its first argument and which returns an
arbitrary object. Pyramid provides several decorators,
used for configuration and return value modification purposes. See
also PEP 318 [http://www.python.org/dev/peps/pep-0318/].

		Default Locale Name

		The locale name used by an application when no explicit
locale name is set. See Localization-Related Deployment Settings.

		default permission

		A permission which is registered as the default for an
entire application. When a default permission is in effect,
every view configuration registered with the system will
be effectively amended with a permission argument that will
require that the executing user possess the default permission in
order to successfully execute the associated view
callable See also Setting a Default Permission.

		Default view

		The default view of a resource is the view invoked when the
view name is the empty string (''). This is the case when
traversal exhausts the path elements in the PATH_INFO of a
request before it returns a context resource.

		Deployment settings

		Deployment settings are settings passed to the Configurator as a
settings argument. These are later accessible via a
request.registry.settings dictionary. Deployment settings can be
used as global application values.

		distribution

		(Setuptools/distutils terminology). A file representing an
installable library or application. Distributions are usually
files that have the suffix of .egg, .tar.gz, or .zip.
Distributions are the target of Setuptools commands such as
easy_install.

		Django

		A full-featured Python web framework [http://djangoproject.com].

		domain model

		Persistent data related to your application. For example, data stored
in a relational database. In some applications, the resource
tree acts as the domain model.

		dotted Python name

		A reference to a Python object by name using a string, in the form
path.to.modulename:attributename. Often used in Paste and
setuptools configurations. A variant is used in dotted names
within ZCML attributes that name objects (such as the ZCML
“view” directive’s “view” attribute): the colon (:) is not
used; in its place is a dot.

		entry point

		A setuptools indirection, defined within a setuptools
distribution setup.py. It is usually a name which refers
to a function somewhere in a package which is held by the
distribution.

		event

		An object broadcast to zero or more subscriber callables
during normal Pyramid system operations during the
lifetime of an application. Application code can subscribe to
these events by using the subscriber functionality described in
Using Events.

		Exception view

		An exception view is a view callable which may be
invoked by Pyramid when an exception is raised during
request processing. See Exception Views for more
information.

		finished callback

		A user-defined callback executed by the router
unconditionally at the very end of request processing . See
Using Finished Callbacks.

		Forbidden view

		An exception view invoked by Pyramid when the
developer explicitly raises a
pyramid.exceptions.Forbidden exception from within
view code or root factory code, or when the
view configuration and authorization policy
found for a request disallows a particular view invocation.
Pyramid provides a default implementation of a
forbidden view; it can be overridden. See
Changing the Forbidden View.

		Genshi

		An XML templating language [http://pypi.python.org/pypi/Genshi/]
by Christopher Lenz.

		Gettext

		The GNU gettext [http://www.gnu.org/software/gettext/]
library, used by the Pyramid translation machinery.

		Google App Engine

		Google App Engine [http://code.google.com/appengine/] (aka
“GAE”) is a Python application hosting service offered by Google.
Pyramid runs on GAE.

		Grok

		A web framework based on Zope 3 [http://grok.zope.org].

		imperative configuration

		The configuration mode in which you use Python to call methods on
a Configurator in order to add each configuration
declaration required by your application.

		interface

		A Zope interface [http://pypi.python.org/pypi/zope.interface]
object. In Pyramid, an interface may be attached to a
resource object or a request object in order to
identify that the object is “of a type”. Interfaces are used
internally by Pyramid to perform view lookups and other
policy lookups. The ability to make use of an interface is
exposed to an application programmers during view
configuration via the context argument, the request_type
argument and the containment argument. Interfaces are also
exposed to application developers when they make use of the
event system. Fundamentally, Pyramid
programmers can think of an interface as something that they can
attach to an object that stamps it with a “type” unrelated to its
underlying Python type. Interfaces can also be used to describe
the behavior of an object (its methods and attributes), but
unless they choose to, Pyramid programmers do not need
to understand or use this feature of interfaces.

		Internationalization

		The act of creating software with a user interface that can
potentially be displayed in more than one language or cultural
context. Often shortened to “i18n” (because the word
“internationalization” is I, 18 letters, then N). See also:
Localization.

		Jinja2

		A text templating language [http://jinja.pocoo.org/2/] by Armin
Ronacher.

		JSON

		JavaScript Object Notation [http://www.json.org/] is a data
serialization format.

		Jython

		A Python implementation <http://www.jython.org/> written for
the Java Virtual Machine.

		lineage

		An ordered sequence of objects based on a “location -aware”
resource. The lineage of any given resource is composed of
itself, its parent, its parent’s parent, and so on. The order of the
sequence is resource-first, then the parent of the resource, then its
parent’s parent, and so on. The parent of a resource in a lineage is
available as its __parent__ attribute.

		Locale Name

		A string like en, en_US, de, or de_AT which
uniquely identifies a particular locale.

		Locale Negotiator

		An object supplying a policy determining which locale
name best represents a given request. It is used by the
pyramid.i18n.get_locale_name(), and
pyramid.i18n.negotiate_locale_name() functions, and
indirectly by pyramid.i18n.get_localizer(). The
pyramid.i18n.default_locale_negotiator() function
is an example of a locale negotiator.

		Localization

		The process of displaying the user interface of an
internationalized application in a particular language or
cultural context. Often shortened to “l10” (because the word
“localization” is L, 10 letters, then N). See also:
Internationalization.

		Localizer

		An instance of the class pyramid.i18n.Localizer which
provides translation and pluralization services to an
application. It is retrieved via the
pyramid.i18n.get_localizer() function.

		location

		The path to an object in a resource tree. See
Location-Aware Resources for more information about how to make a resource
object location-aware.

		Mako

		Mako [http://www.makotemplates.org/] is a template language language
which refines the familiar ideas of componentized layout and inheritance
using Python with Python scoping and calling semantics.

		Message Catalog

		A gettext .mo file containing translations.

		Message Identifier

		A string used as a translation lookup key during localization.
The msgid argument to a translation string is a
message identifier. Message identifiers are also present in a
message catalog.

		METAL

		Macro Expansion for TAL [http://wiki.zope.org/ZPT/METAL], a
part of ZPT which makes it possible to share common look
and feel between templates.

		middleware

		Middleware is a WSGI concept. It is a WSGI component
that acts both as a server and an application. Interesting uses
for middleware exist, such as caching, content-transport
encoding, and other functions. See WSGI.org [http://wsgi.org]
or PyPI [http://python.org/pypi] to find middleware for your
application.

		mod_wsgi

		mod_wsgi [http://code.google.com/p/modwsgi/] is an Apache
module developed by Graham Dumpleton. It allows WSGI
applications (such as applications developed using
Pyramid) to be served using the Apache web server.

		module

		A Python source file; a file on the filesystem that typically ends with
the extension .py or .pyc. Modules often live in a
package.

		multidict

		An ordered dictionary that can have multiple values for each
key. Adds the methods getall, getone, mixed, and
add to the normal dictionary interface. See
http://pythonpaste.org/webob/class-webob.multidict.MultiDict.html

		Not Found view

		An exception view invoked by Pyramid when the
developer explicitly raises a pyramid.exceptions.NotFound
exception from within view code or root factory
code, or when the current request doesn’t match any view
configuration. Pyramid provides a default
implementation of a not found view; it can be overridden. See
Changing the Not Found View.

		package

		A directory on disk which contains an __init__.py file, making
it recognizable to Python as a location which can be import -ed.
A package exists to contain module files.

		Paste

		Paste [http://pythonpaste.org] is a WSGI development and
deployment system developed by Ian Bicking.

		PasteDeploy

		PasteDeploy [http://pythonpaste.org] is a library used by
Pyramid which makes it possible to configure
WSGI components together declaratively within an .ini
file. It was developed by Ian Bicking as part of Paste.

		permission

		A string or unicode object that represents an action being taken against
a context resource. A permission is associated with a view name
and a resource type by the developer. Resources are decorated with
security declarations (e.g. an ACL), which reference these
tokens also. Permissions are used by the active to security policy to
match the view permission against the resources’s statements about which
permissions are granted to which principal in a context in order to to
answer the question “is this user allowed to do this”. Examples of
permissions: read, or view_blog_entries.

		pipeline

		The Paste term for a single configuration of a WSGI
server, a WSGI application, with a set of middleware in-between.

		pkg_resources

		A module which ships with setuptools that provides an API for
addressing “asset files” within a Python package. Asset files
are static files, template files, etc; basically anything
non-Python-source that lives in a Python package can be considered a
asset file. See also PkgResources [http://peak.telecommunity.com/DevCenter/PkgResources]

		predicate

		A test which returns True or False. Two different types
of predicates exist in Pyramid: a view predicate
and a route predicate. View predicates are attached to
view configuration and route predicates are attached to
route configuration.

		pregenerator

		A pregenerator is a function associated by a developer with a
route. It is called by pyramid.url.route_url()
in order to adjust the set of arguments passed to it by the user
for special purposes. It will influence the URL returned by
route_url. See
pyramid.interfaces.IRoutePregenerator for more
information.

		principal

		A principal is a string or unicode object representing a userid
or a group id. It is provided by an authentication
policy. For example, if a user had the user id “bob”, and Bob
was part of two groups named “group foo” and “group bar”, the
request might have information attached to it that would
indicate that Bob was represented by three principals: “bob”,
“group foo” and “group bar”.

		project

		(Setuptools/distutils terminology). A directory on disk which
contains a setup.py file and one or more Python packages. The
setup.py file contains code that allows the package(s) to be
installed, distributed, and tested.

		Pylons

		A lightweight Python web framework [http://pylonshq.com].

		PyPI

		The Python Package Index [http://pypi.python.org/pypi], a
collection of software available for Python.

		Python

		The programming language <http://python.org> in which
Pyramid is written.

		renderer

		A serializer that can be referred to via view
configuration which converts a non-Response return
values from a view into a string (and ultimately a
response). Using a renderer can make writing views that require
templating or other serialization less tedious. See
Writing View Callables Which Use a Renderer for more information.

		renderer factory

		A factory which creates a renderer. See
Adding and Overriding Renderers for more information.

		renderer globals

		Values injected as names into a renderer based on application
policy. See Adding Renderer Globals for more
information.

		Repoze

		“Repoze” is essentially a “brand” of software developed by
Agendaless Consulting [http://agendaless.com] and a set of
contributors. The term has no special intrinsic meaning. The
project’s website [http://repoze.org] has more information.
The software developed “under the brand” is available in a
Subversion repository [http://svn.repoze.org].

		repoze.catalog

		An indexing and search facility (fielded and full-text) based on
zope.index [http://pypi.python.org/pypi/zope.index]. See the
documentation [http://docs.repoze.org/catalog] for more
information. A tutorial for its usage in Pyramid
exists in Using repoze.catalog Within Pyramid.

		repoze.lemonade

		Zope2 CMF-like data structures and helper facilities [http://docs.repoze.org/lemonade] for CA-and-ZODB-based
applications useful within Pyramid applications.

		repoze.who

		Authentication middleware [http://docs.repoze.org/who] for
WSGI applications. It can be used by Pyramid to
provide authentication information.

		repoze.workflow

		Barebones workflow for Python apps [http://docs.repoze.org/workflow] . It can be used by
Pyramid to form a workflow system.

		request

		A WebOb request object. See Request and Response Objects (narrative)
and pyramid.request (API documentation) for information
about request objects.

		request factory

		An object which, provided a WSGI environment as a single
positional argument, returns a WebOb compatible request.

		request type

		An attribute of a request that allows for specialization
of view invocation based on arbitrary categorization. The every
request object that Pyramid generates and
manipulates has one or more interface objects attached to
it. The default interface attached to a request object is
pyramid.interfaces.IRequest.

		resource

		An object representing a node in the resource tree of an
application. If traversal is used, a resource is an element in
the resource tree traversed by the system. When traversal is used, a
resource becomes the context of a view. If url
dispatch is used, a single resource is generated for each request and
is used as the context resource of a view.

		Resource Location

		The act of locating a context resource given a request.
Traversal and URL dispatch are the resource location
subsystems used by Pyramid.

		resource tree

		A nested set of dictionary-like objects, each of which is a
resource. The act of traversal uses the resource tree
to find a context resource.

		response

		An object that has three attributes: app_iter (representing an
iterable body), headerlist (representing the http headers sent
to the user agent), and status (representing the http status
string sent to the user agent). This is the interface defined for
WebOb response objects. See Request and Response Objects for
information about response objects.

		response callback

		A user-defined callback executed by the router at a
point after a response object is successfully created.
See Using Response Callbacks.

		reStructuredText

		A plain text format [http://docutils.sourceforge.net/rst.html]
that is the defacto standard for descriptive text shipped in
distribution files, and Python docstrings. This
documentation is authored in ReStructuredText format.

		root

		The object at which traversal begins when Pyramid
searches for a context resource (for URL Dispatch, the
root is always the context resource unless the traverse= argument
is used in route configuration).

		root factory

		The “root factory” of an Pyramid application is called
on every request sent to the application. The root factory
returns the traversal root of an application. It is
conventionally named get_root. An application may supply a
root factory to Pyramid during the construction of a
Configurator. If a root factory is not supplied, the
application uses a default root object. Use of the default root
object is useful in application which use URL dispatch for
all URL-to-view code mappings.

		route

		A single pattern matched by the url dispatch subsystem,
which generally resolves to a root factory (and then
ultimately a view). See also url dispatch.

		route configuration

		Route configuration is the act of using imperative
configuration or a ZCML <route> statement to
associate request parameters with a particular route using
pattern matching and route predicate statements. See
URL Dispatch for more information about route
configuration.

		route predicate

		An argument to a route configuration which implies a value
that evaluates to True or False for a given
request. All predicates attached to a route
configuration must evaluate to True for the associated route
to “match” the current request. If a route does not match the
current request, the next route (in definition order) is
attempted.

		router

		The WSGI application created when you start a
Pyramid application. The router intercepts requests,
invokes traversal and/or URL dispatch, calls view functions, and
returns responses to the WSGI server on behalf of your
Pyramid application.

		Routes

		A system by Ben Bangert [http://routes.groovie.org/] which
parses URLs and compares them against a number of user defined
mappings. The URL pattern matching syntax in Pyramid is
inspired by the Routes syntax (which was inspired by Ruby On
Rails pattern syntax).

		routes mapper

		An object which compares path information from a request to an
ordered set of route patterns. See URL Dispatch.

		scan

		The term used by Pyramid to define the process of
importing and examining all code in a Python package or module for
configuration decoration.

		session

		A namespace that is valid for some period of continual activity
that can be used to represent a user’s interaction with a web
application.

		session factory

		A callable, which, when called with a single argument named
request (a request object), returns a
session object.

		setuptools

		Setuptools [http://peak.telecommunity.com/DevCenter/setuptools]
builds on Python’s distutils to provide easier building,
distribution, and installation of libraries and applications.

		SQLAlchemy

		SQLAlchemy’ [http://www.sqlalchemy.org/] is an object
relational mapper used in tutorials within this documentation.

		subpath

		A list of element “left over” after the router has
performed a successful traversal to a view. The subpath is a
sequence of strings, e.g. ['left', 'over', 'names']. Within
Pyramid applications that use URL dispatch rather than traversal, you
can use *subpath in the route pattern to influence the
subpath. See Using *subpath in a Route Pattern for more information.

		subscriber

		A callable which receives an event. A callable becomes a
subscriber via imperative configuration or the
<subscriber> ZCML directive. See Using Events for
more information.

		template

		A file with replaceable parts that is capable of representing some
text, XML, or HTML when rendered.

		thread local

		A thread-local variable is one which is essentially a global
variable in terms of how it is accessed and treated, however,
each thread
<http://en.wikipedia.org/wiki/Thread_(computer_science)> used by
the application may have a different value for this same “global”
variable. Pyramid uses a small number of thread local
variables, as described in Thread Locals. See also
the threading.local documentation
<http://docs.python.org/library/threading.html#threading.local>
for more information.

		Translation Directory

		A translation directory is a gettext translation
directory. It contains language folders, which themselves
contain LC_MESSAGES folders, which contain .mo files.
Each .mo file represents a set of translations for a language
in a translation domain. The name of the .mo file
(minus the .mo extension) is the translation domain name.

		Translation Domain

		A string representing the “context” in which a translation was
made. For example the word “java” might be translated
differently if the translation domain is “programming-languages”
than would be if the translation domain was “coffee”. A
translation domain is represnted by a collection of .mo files
within one or more translation directory directories.

		Translation String

		An instance of pyramid.i18n.TranslationString, which
is a class that behaves like a Unicode string, but has several
extra attributes such as domain, msgid, and mapping
for use during translation. Translation strings are usually
created by hand within software, but are sometimes created on the
behalf of the system for automatic template translation. For
more information, see Internationalization and Localization.

		Translator

		A callable which receives a translation string and
returns a translated Unicode object for the purposes of
internationalization. A localizer supplies a
translator to a Pyramid application accessible via its
translate method.

		traversal

		The act of descending “up” a tree of resource objects from a root
resource in order to find a context resource. The
Pyramid router performs traversal of resource objects
when a root factory is specified. See the
Traversal chapter for more information. Traversal can be
performed instead of URL dispatch or can be combined with
URL dispatch. See Combining Traversal and URL Dispatch for more information about
combining traversal and URL dispatch (advanced).

		URL dispatch

		An alternative to traversal as a mechanism for locating a
context resource for a view. When you use a
route in your Pyramid application via a route
configuration, you are using URL dispatch. See the
URL Dispatch for more information.

		Venusian

		Venusian [http://docs.repoze.org/venusian] is a library which
allows framework authors to defer decorator actions. Instead of
taking actions when a function (or class) decorator is executed
at import time, the action usually taken by the decorator is
deferred until a separate “scan” phase. Pyramid relies
on Venusian to provide a basis for its scan feature.

		view

		Common vernacular for a view callable.

		view callable

		A “view callable” is a callable Python object which is associated
with a view configuration; it returns a response
object . A view callable accepts a single argument: request,
which will be an instance of a request object. An
alternate calling convention allows a view to be defined as a
callable which accepts a pair of arguments: context and
request: this calling convention is useful for
traversal-based applications in which a context is always
very important. A view callable is the primary mechanism by
which a developer writes user interface code within
Pyramid. See Views for more information
about Pyramid view callables.

		view configuration

		View configuration is the act of associating a view
callable with configuration information. This configuration
information helps map a given request to a particular view
callable and it can influence the response of a view callable.
Pyramid views can be configured via imperative
configuration, ZCML or by a special @view_config
decorator coupled with a scan. See Views
for more information about view configuration.

		View handler

		A view handler ties together
pyramid.config.Configurator.add_route() and
pyramid.config.Configurator.add_view() to make it more
convenient to register a collection of views as a single class when
using url dispatch. See also handlers_chapter.

		View Lookup

		The act of finding and invoking the “best” view callable
given a request and a context resource.

		view name

		The “URL name” of a view, e.g index.html. If a view is
configured without a name, its name is considered to be the empty
string (which implies the default view).

		view predicate

		An argument to a view configuration which evaluates to
True or False for a given request. All predicates
attached to a view configuration must evaluate to true for the
associated view to be considered as a possible callable for a
given request.

		virtual root

		A resource object representing the “virtual” root of a request; this
is typically the physical root object (the object returned by the
application root factory) unless Virtual Hosting is in
use.

		virtualenv

		An isolated Python environment. Allows you to control which
packages are used on a particular project by cloning your main
Python. virtualenv [http://pypi.python.org/pypi/virtualenv]
was created by Ian Bicking.

		WebOb

		WebOb [http://pythonpaste.org/webob/] is a WSGI request/response
library created by Ian Bicking.

		WebTest

		WebTest [http://pythonpaste.org/webtest/] is a package which can help
you write functional tests for your WSGI application.

		WSGI

		Web Server Gateway Interface [http://wsgi.org/]. This is a
Python standard for connecting web applications to web servers,
similar to the concept of Java Servlets. pyramid requires
that your application be served as a WSGI application.

		ZCML

		Zope Configuration Markup Language [http://www.muthukadan.net/docs/zca.html#zcml], an XML dialect
used by Zope and Pyramid for configuration tasks. ZCML
is capable of performing different types of configuration
declaration, but its primary purpose in Pyramid is to
perform view configuration and route configuration
within the configure.zcml file in a Pyramid
application. You can use ZCML as an alternative to
imperative configuration.

		ZCML declaration

		The concrete use of a ZCML directive within a ZCML file.

		ZCML directive

		A ZCML “tag” such as <view> or <route>.

		ZEO

		Zope Enterprise Objects [http://www.zope.org/Documentation/Books/ZopeBook/2_6Edition/ZEO.stx]
allows multiple simultaneous processes to access a single
ZODB database.

		ZODB

		Zope Object Database [http://zodb.org], a
persistent Python object store.

		Zope

		The Z Object Publishing Framework [http://zope.org], a
full-featured Python web framework.

		Zope Component Architecture

		The Zope Component Architecture [http://www.muthukadan.net/docs/zca.html] (aka ZCA) is a system
which allows for application pluggability and complex dispatching
based on objects which implement an interface.
Pyramid uses the ZCA “under the hood” to perform view
dispatching and other application configuration tasks.

		ZPT

		The Zope Page Template [http://wiki.zope.org/ZPT/FrontPage]
templating language.

 © Copyright 2010, Agendaless Consulting.
 Last updated on Dec 20, 2010.
 Created using Sphinx 1.0.5.

_static/plus.png

_images/resourcetreetraverser.png
Any path

elements in

in traversal
stack?

Current object has a
__getitem _
method?

Model Graph Traversal

authorintro.html

 Navigation

 		
 index

 		
 modules |

 		The Pyramid Web Application Development Framework v1.0a7 »

Author Introduction

Welcome to “The Pyramid Web Application Framework”. In this
introduction, I’ll describe the audience for this book, I’ll describe
the book content, I’ll provide some context regarding the genesis of
Pyramid, and I’ll thank some important people.

I hope you enjoy both this book and the software it documents. I’ve
had a blast writing both.

Audience

This book is aimed primarily at a reader that has the following
attributes:

		At least a moderate amount of Python experience.

		A familiarity with web protocols such as HTTP and CGI.

If you fit into both of these categories, you’re in the direct target
audience for this book. But don’t worry, even if you have no
experience with Python or the web, both are easy to pick up “on the
fly”.

Python is an excellent language in which to write applications;
becoming productive in Python is almost mind-blowingly easy. If you
already have experience in another language such as Java, Visual
Basic, Perl, Ruby, or even C/C++, learning Python will be a snap; it
should take you no longer than a couple of days to become modestly
productive. If you don’t have previous programming experience, it
will be slightly harder, and it will take a little longer, but you’d
be hard-pressed to find a better “first language.”

Web tech